Can you find the Length and Width? | (Rectangle) |

Поділитися
Вставка
  • Опубліковано 16 гру 2024

КОМЕНТАРІ • 90

  • @jamestalbott4499
    @jamestalbott4499 11 днів тому +2

    Thank you! The quest to find a special triangle, solving the problem.

    • @PreMath
      @PreMath  11 днів тому +1

      You are very welcome!
      Thanks for the feedback ❤️

  • @The_Long_Walk_to_Freedom
    @The_Long_Walk_to_Freedom 11 днів тому +11

    Why all these steps? If the area of rectangle is 2,the area of triangle will be 1. So we take tan 15°=width/length and taking the formula of area of triangle A=1/2*width*length. After substitution of the value,the value of lenth and width will be 2.8 and 0.7 units respectively.Thanks🙏

    • @PreMath
      @PreMath  11 днів тому +1

      You are very welcome!
      Thanks for the feedback ❤️

  • @marioalb9726
    @marioalb9726 11 днів тому +10

    A = b.h = 2 cm²
    tan15°= h/b --> h= b tan15°
    Replacing :
    A = b² tan15° = 2 cm²
    b² = 2/tan15°
    b = 2,73cm = √3+1 cm
    h = A/b= 0,73cm = √3-1 cm

    • @PreMath
      @PreMath  11 днів тому

      Excellent!
      Thanks for sharing ❤️

    • @johankotze42
      @johankotze42 11 днів тому

      My approach as well

  • @bkp_s
    @bkp_s 10 днів тому

    Nice video sir

  • @marioalb9726
    @marioalb9726 11 днів тому +3

    A = b.h = 2 cm² --> h=A/b
    h= b tan15°
    Equalling:
    A/b = b tan15°
    b² = A/tab15° = 2/tan15°
    b = 2,73cm = √3+1 cm
    h = A/b= 0,73cm= √3-1 cm

    • @PreMath
      @PreMath  11 днів тому

      Excellent!
      Thanks for sharing ❤️

  • @murdock5537
    @murdock5537 11 днів тому +1

    Nice! φ = 30°; ∎ABCD → AB = CD = a; AD = BC = b; DAB = ABC = 3φ
    CAB = φ/2; ab/2 = 2 → b = 4/a
    tan⁡(φ/2) = 2 - √3 = b/a → b = a(2 - √3) = 4/a → a = (√2)(√3 + 1) → b = (√2)(√3 - 1)

    • @PreMath
      @PreMath  11 днів тому +1

      Excellent!
      Thanks for sharing ❤️

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq 10 днів тому

    In case of any 🔺 formed by the diagonal
    width /length =tan 15
    =(√3-1)/(√3+1)
    Now
    (√3-1)(√3+1)=2
    This result matches with the given area of rectangle
    Hence width and length are √3 -1 and √3 +1 respectively.

  • @jimlocke9320
    @jimlocke9320 11 днів тому +2

    The 15°-75°-90° triangle, while not considered "special" in geometry, appears frequently enough in problems that it is worthwhile to have its properties handy. The ratio of sides (short):(long):(hypotenuse) can be written as (√3 − 1):(√3 + 1):(2√2). The area is hypotenuse squared divided by 8. Let the sides be (√3 − 1)m, (√3 + 1)m and hypotenuse (2√2)m. The area of each triangle in the rectangle is half the area of the rectangle, or 2/2 = 1. So, ((2√2)m)²/8 = 1, 8m²/8 = 1, m² = 1 and m = 1. Width = short side = (√3 − 1)m = (√3 − 1). Length = long side = (√3 + 1)m = (√3 + 1), as PreMath also found.
    Note that PreMath effectively derived the properties of the 15°-75°-90° triangle, except for the above formula for its area.

    • @PreMath
      @PreMath  11 днів тому

      Excellent!
      Thanks for the feedback ❤️

    • @jimlocke9320
      @jimlocke9320 10 днів тому

      @@PreMath and thank you for the compliment! Please keep up the good work posting challenging geometry problems with solutions!

  • @cyruschang1904
    @cyruschang1904 9 днів тому

    Tan75° = 2 + √3
    width = x, length = (2 + √3)x
    rectangle area = (2 + √3)x^2 = 2
    width = x = √(4 - 2√3) = √3 - 1
    length = (2 + √3)(√3 - 1) = 1 + √3

  • @michaelkouzmin281
    @michaelkouzmin281 11 днів тому +1

    a bit of engineering:
    1. let w= width, l=length:
    2. {l*w=2; w/l=tan(D15)};
    3. w= l*tan(15);
    4. tan(15) = 2-sqrt(3);
    5. l*l*tan(15)=2;
    l= sqrt(2/tan(15)) = sqrt(3)+1
    6. w = (1+sqrt(3)) *tan(15)= sqrt(3)-1.

    • @PreMath
      @PreMath  11 днів тому

      Excellent!
      Thanks for sharing ❤️

  • @marcgriselhubert3915
    @marcgriselhubert3915 11 днів тому +1

    Let's note a = AB and b = AD. We have a.b = 2, and in triangle ABC b/a = tan(15°) = 2 -sqrt(3), so 2 = (2 - sqrt(3)).(a^2), which gives that a^2 = 2/(2 -sqrt(3))
    or a^2 = 4 + 2.sqrt(3) = (1 + sqrt(3))^2. we finally have that a = 1 + sqrt(3) and b = 2/(1 +sqrt(3)) = -1 + sqrt(3). (Very easy if tan(15°) is known.)

    • @PreMath
      @PreMath  11 днів тому

      Excellent!
      Thanks for sharing ❤️

  • @misterenter-iz7rz
    @misterenter-iz7rz 11 днів тому +2

    s sin 15 × s cos 15=2=s^2/2 sin 30=s^2/4, s^2=8, s=2sqrt(2), AB=s cos 15=sqrt(3)+1, BC=s sin 15=sqrt(3)-1 😊.

    • @PreMath
      @PreMath  11 днів тому

      Excellent!
      Thanks for sharing ❤️

  • @ChuzzleFriends
    @ChuzzleFriends 11 днів тому +1

    A = lw
    lw = 2
    Label AB = l & BC = w.
    By definition of acute angles in a right triangle, m∠ACB = 75°.
    Draw a segment thru point C and a point E on side AB, such that m∠BCE = 60°.
    So, m∠ACE = 75°- 60° = 15°.
    As a result, △AEC is an isosceles triangle and △CBE is a special 30°-60°-90° right triangle.
    So, AE = CE. Use the properties of 30°-60°-90° right triangles.
    b = a√3
    BE = w√3
    c = 2a
    CE = 2w
    So, AE = 2w. By the Segment Addition Postulate, AB = l = AE + BE = 2w + w√3 = w(2 + √3).
    lw = 2
    w * w * (2 + √3) = 2
    w² * (2 + √3) = 2
    w² = 2/(2 + √3)
    = [2(2 - √3)]/(4 - 3)
    = (4 - 2√3)/1
    = 4 - 2√3
    = (3 + 1) - 2√3
    = (√3)² + 1² - 2√3
    = (√3 - 1)²
    w = √3 - 1
    Remember the width can't be negative.
    l = w(2 + √3)
    = (-1 + √3)(2 + √3)
    = -2 + 2√3 - √3 + 3
    = 1 + √3
    So, the side lengths of the rectangle are as follows:
    Length = 1 + √3 u ≈ 2.73 u
    Width = -1 + √3 u ≈ 0.73 u

    • @PreMath
      @PreMath  11 днів тому

      Excellent!
      Thanks for sharing ❤️

  • @rey-dq3nx
    @rey-dq3nx 11 днів тому +1

    tan 15°=2-√3
    2-√3=a/b
    ab=2
    b=2/a
    2-√3=a/2/a
    2-√3=a² /2
    a²=2(2- √3)
    a²=4-2√3
    a²=(3+1-2√3)
    a=√3-1
    2=(√3-1)b
    b=2/(√3-1)
    b=√3+1
    a=√3-1

    • @PreMath
      @PreMath  11 днів тому

      Excellent!
      Thanks for sharing ❤️

  • @unknownidentity2846
    @unknownidentity2846 11 днів тому +1

    Let's face this challenge:
    .
    ..
    ...
    ....
    .....
    Let a=AB=CD and let b=BC=DA be the side lengths of the rectangle. Since ABC is a right triangle, we obtain the following two equations for our two unknown quantities a and b:
    A(ABCD) = a*b
    b/a = tan(∠BAC) = tan(15°)
    tan(15°)
    = tan(45° − 30°)
    = [tan(45°) − tan(30°)]/[1 + tan(45°)*tan(30°)]
    = (1 − 1/√3)/(1 + 1/√3)
    = (√3 − 1)/(√3 + 1)
    2 = a*b ∧ b = a*tan(15°) = a*(√3 − 1)/(√3 + 1) ⇒ 2 = a²*(√3 − 1)/(√3 + 1)
    2 = a²*(√3 − 1)/(√3 + 1)
    2*(√3 + 1) = a²*(√3 − 1)
    2*(√3 + 1)² = a²*(√3 − 1)*(√3 + 1)
    2*(√3 + 1)² = a²*(3 − 1)
    2*(√3 + 1)² = a²*2
    (√3 + 1)² = a²
    ⇒ a = √3 + 1
    ⇒ b = (√3 + 1)*(√3 − 1)/(√3 + 1) = √3 − 1
    Best regards from Germany

    • @PreMath
      @PreMath  11 днів тому

      Excellent!
      Thanks for sharing ❤️

  • @brianlewis703
    @brianlewis703 10 днів тому

    Here's another trigonometry approach avoiding approximations:
    let d be the long diagonal. We have y = sin(15°)d, x = cos(15°)d
    So 2 = xy = sin(15°)cos(15°)d² (1)
    Using the sin double-angle trig identity we see
    sin(15°)cos(15°) = sin(30°)/2 = .5/2 = .25
    so from (1) we have d² = 8 (2)
    By Pythagoras, d² = x² + y² so combining with (1) and (2)
    x² + y² + 2xy = 8 + 4 = 12 which gives
    (x + y)² = 12
    x + y = 2√3
    y = 2√3 - x (3)
    Substituting back into (1)
    x(2√3 - x) = 2 which gives the quadratic:
    x² - x(2√3) + 2 = 0 easily solved by the quadratic formula to give
    x = √3 + 1 and the short side is the other solution
    y = √3 - 1

  • @wackojacko3962
    @wackojacko3962 11 днів тому

    There are two "Perfect Square Trinomials" and also "The Difference of Squares". So @ 7:45 that "Famous Identity" one can see the pattern visually if a is the side length of one Big happy square then (a-b)² is a happy square in the Big square and b² is another happy square in the Big square. There are two happy Rectangles b(a-b) in the Big happy square. ... so with some fancy algebraic nipplation we get:
    (a-b)²=a²-2b(a-b)-b²
    =a²-2ab+2b²-b²
    =a²-2ab+b²
    ... @ 8:35 hopefully you've had enough coffee too start tweakin to get y² into a manageable form to apply that Famous "Difference of Squares" Identity! Good luck! 😊

    • @PreMath
      @PreMath  11 днів тому +1

      😀
      Thanks for the feedback ❤️

  • @Azven62
    @Azven62 11 днів тому

    Length = L, width = L.Tan(15)
    2 = L².Tan(15)
    L=√(2/Tan(15) )
    2.732 and 0.732

  • @quigonkenny
    @quigonkenny 11 днів тому +1

    Let AB = CD = x and BC = DA = y. The area of the rectangle will be xy = 2. Let ∠CAB = θ.
    tanθ = BC/AB
    tan15° = y/x
    (√3-1)/(√3+1) = y/x
    (√3+1)y = (√3-1)x
    (√3+1)(2/x) = (√3-1)x
    2(√3+1) = (√3-1)x²
    x² = 2√3+1)/(√3-1)
    x² = 2(√3+1)(√3+1)/(√3-1)(√3+1)
    x² = 2(√3+1)²/(3-1) = (√3+1)²
    [ x = √3 + 1 ≈ 2.732 units ]
    y = 2/x = 2/(√3+1)
    y = 2(√3-1)/(√3+1)(√3-1)
    y = 2(√3-1)/(3-1)
    [ y = √3 - 1 ≈ 0.732 units ]

    • @PreMath
      @PreMath  11 днів тому

      Excellent!
      Thanks for sharing ❤️

  • @devondevon4366
    @devondevon4366 10 днів тому

    another approach
    The area of a 15, 75, 90-degree right triangle can be determined by
    hypotenuse squared /8. Hence, h^2/8 = a (partly due to sin 75. sin 15= 1/4 and
    sin 90 =1 and the law of sines)
    Hence, 1= h^2/8
    (Since if the area of the rectangle = 2, then the area of the triangle is one-half or 1)
    h^2=8
    h= sqrt 8
    Let the width of the rectangle = a and the length b,
    then ab=2 and
    a^2 + b^2 = (sqrt 8)^2
    a^2 + b^2 = 8
    Since ab=2 , then a=2/b
    (2/b)^2 + b^2 =8
    4/b^2 + b^2 = 8
    4 + b^4 = 8b^2
    Let n= b^2
    Hence, n^2= b^4
    Hence 4 + n^2= 8n
    n^2-8n+ 4
    n= 0.535898 and n= 7.4641
    Hence a^2 = 0.535898 and b^2= 7.4641
    hence a = sqrt 0.535898 or 0.7320505. Answer
    Hence, b = sqrt 7.4641 or 2.7320505 Answer
    Proof why the area of a 15-75-90 right triangle is equal hypotenuse squared/8
    So why h^2/8 = area?
    note a =BC b=AB
    Law of Sines:
    a/sin A = b/sin B = c/sin C
    Any two of the variables can be used
    So a/sin A = c /sin C
    and b/sin B = c/sin C
    Hence, a/sin 15 = c/sin 90
    Hence, a = c*sin 15 / sin 90
    and b = c* sin 75/ sin 90
    Recall the area of a triangle = 1/2 base* height
    Hence, ab/2
    Hence, (c*sin15/sin90)(c*sin75/sin90)* 1/2 (This is a*b/2)
    Let's rearrange the above
    c*c* sin15* sin75* sin15* sin75*1/sin 90*1/sin90* 1
    c^2 *1/4*1/4 / 1/1 * 2
    c^2 * 1/8
    c^2/8
    but c^2= hypotenuse square
    Hence, the area of a 75-90-15 right triangle can be determined if only the hypotenuse
    is given, and it is the hypotenuse squared divided by 8 or c^2/8 or h^2/8 (I used
    h for the hypotenuse above)

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq 10 днів тому

    In case of any of the two triangles formed by the diagonal
    Width /length =tan 15
    =(√3-1)/(√3+1)
    Now width is (√3-1)x
    & length is (√3+1)x
    Now
    Width *length
    =2x^2
    Hence 2x^2=2
    >x =1
    Then width is √3 -1
    & length is √3 +1

  • @devondevon4366
    @devondevon4366 10 днів тому

    Answer 0.732051 and 2.732051 or sqrt 3 - 1 and sqrt 3 -1
    note that in a 75, 15, 9and 0 right triangle, the ratio of the three sites is sqrt 3- 1 sqrt 3 + 1
    and the hypotenuse is 2 sqrt 2
    Since the area of a triangle is L * W, then sqrt 3 -1
    * sqrt 3 + 1
    ---------------
    3 -1 = 2
    Since the area is given as 2, then the answer is length sqrt 3 + 1 and width sqrt 3 -1

  • @calvinmasters6159
    @calvinmasters6159 11 днів тому +3

    tan 15 ° = 0.268
    ab = 2
    a(0.268a) = 2
    a^2 = 2/0.268
    a = 2.732
    b = 0.732

    • @gaylespencer6188
      @gaylespencer6188 11 днів тому +1

      My way exactly. This is how an engineer would state the solution. Pre-Math states it in the form of a mathematician.

    • @PreMath
      @PreMath  11 днів тому +1

      Excellent!
      Thanks for sharing ❤️

    • @calvinmasters6159
      @calvinmasters6159 11 днів тому +1

      @@PreMath It's nice to have the practice.
      Algebra and trigonometry have served me well over the years, going back to slide rules.
      Funny, in my friends circles, very few use them.

    • @PreMath
      @PreMath  11 днів тому

      @@calvinmasters6159
      Super!
      Many thanks

  • @ManojkantSamal
    @ManojkantSamal 11 днів тому +2

    Length =*3+1, breadth =*3-1 (May be )
    *=read as square root

    • @PreMath
      @PreMath  11 днів тому

      Excellent!
      Thanks for sharing ❤️

  • @pedllz
    @pedllz 5 днів тому

    x^2 * tan(15) = 2
    x = sqrt(2/tan(15)) = 2.73205
    y = x * tan(15) = 0.73205

  • @gelbkehlchen
    @gelbkehlchen 11 днів тому +1

    Solution:
    a = horizontal side of the rectangle,
    b = vertical side of the rectangle.
    (1) a*b = 2
    (2) b/a = tan(15°) |*a ⟹ (2a) b = a*tan(15°) |in (1) ⟹
    (1a) a*a*tan(15°) = a²*tan(15°) = 2 |/tan(15°) ⟹
    (1b) a² = 2/tan(15°) |√() ⟹
    (1c) a = √[2/tan(15°)] ≈ 2.7321 |in (2a)
    (2b) b = √[2/tan(15°)]*tan(15°) = √[2*tan(15°)] ≈ 0.7321

    • @PreMath
      @PreMath  11 днів тому

      Excellent!
      Thanks for sharing ❤️

  • @7777yo7777
    @7777yo7777 11 днів тому +1

    You can do tan 15 = tan (45-30)

  • @soli9mana-soli4953
    @soli9mana-soli4953 11 днів тому

    To avoid the 15,75,90 degree right triangle we can cut the rectangle in 2 parts along the diagonal AC and then we can draw an isosceles triangle with the same area of the rectangle and with the upper angle A = 30° (being the two angle at the base = 75°). The area of such isosceles triangle is:
    Area = 1/2*x*x*sin 30° = 2 ( x are the two equal sides)
    x² = 8
    x = 2√ 2 that is the measure of diagonal AC
    (to avoid trigonometry you can draw a right triangle of 30,60,90 degree inside the isosceles triangle, you will find that area = 1/2*x*2x=2 and AC = 2x)
    Finally we can solve the problem knowing that in the right triangle ABC in the video, its area = 1 and AC = 2√ 2
    1/2*AB*BC = 1 (area)
    AB² + BC² = AC²
    so, setting AB=a and BC=b we have the following system:
    a*b = 2
    a² + b² = ( 2√ 2)² = 8
    (a+b)² = a² + b² + 2ab = 8 + 2*2 = 12
    a + b = 2√ 3
    we can find a and b with : t² - (a+b)t + (a*b) = 0
    t² - 2√ 3t + 2 = 0
    a = √ 3 + 1
    b = √ 3 - 1

    • @PreMath
      @PreMath  11 днів тому

      Excellent!
      Thanks for sharing ❤️

  • @sorourhashemi3249
    @sorourhashemi3249 10 днів тому

    Thanks I love it. in a right triangle with a 15° angle, the altitude to the hypotenuse is one fourth of the hypotenuse. So AC = 2 rad.2. And from xy=2 we find x and y

  • @DB-lg5sq
    @DB-lg5sq 11 днів тому +1

    شكرا لكم

    • @PreMath
      @PreMath  11 днів тому

      You are very welcome!
      Thanks for the feedback ❤️

  • @SrisailamNavuluri
    @SrisailamNavuluri 10 днів тому

    xy=2,y/x=2/x^2
    tan15°=tan(45°-30°)=(√3-1)/(√3+1)=2/(√3+1)^2=y/x=2/x^2
    x^2=(√3+1)^2,x=√3-1,y=2/(3+1)=(√3-1)(√3+1)/(√3+1)=√3-1
    x=√3+1. ,y=√3-1

  • @rupendrakumar7857
    @rupendrakumar7857 11 днів тому +1

    l= √3+1, b=√3-1

    • @PreMath
      @PreMath  11 днів тому

      Excellent!
      Thanks for sharing ❤️

  • @imetroangola17
    @imetroangola17 11 днів тому +1

    Ótima saída para quem não sabe encontrar a tangente de 15°! Parabéns! 🎉🎉🎉

    • @PreMath
      @PreMath  11 днів тому +1

      Fico feliz em ouvir isso! 😀
      De nada!
      Obrigado pelo feedback ❤️

  • @gauravroy8528
    @gauravroy8528 10 днів тому

    We know,
    breadth = length × tan(15°)
    Length × breadth = 2
    Length = √(2 ÷ tan(15°))
    And breadth = √(2 × tan(15°))
    Thank you very much.😊😊

  • @kandakoeipudsa5014
    @kandakoeipudsa5014 11 днів тому +1

    🙏

    • @PreMath
      @PreMath  11 днів тому

      ❤️🙏
      Thanks for the feedback ❤️

  • @Birol731
    @Birol731 11 днів тому +1

    My way of solution ▶
    In this rectangle ABCD
    [AB]= a
    [BC]= b
    Let’s consider the right triangle ΔABC.
    We know that:
    tan(15°)= [BC]/[AB]
    0,2679= b/a

    b= 0,2679 a
    a*b = 2
    b= 0,2679 a

    a*0,2679 a= 2
    0,2679 a²= 2
    a²= 7,4641
    a= 2,732
    b= 0,2679 a
    b= 0,732

    Thus, we have :
    a= 2,732 length units
    b= 0,732 length units

    • @PreMath
      @PreMath  11 днів тому

      Excellent!
      Thanks for sharing ❤️

  • @AmirgabYT2185
    @AmirgabYT2185 11 днів тому +2

    √3+1; √3-1

    • @PreMath
      @PreMath  11 днів тому +1

      Excellent!
      Thanks for sharing ❤️

  • @alexundre8745
    @alexundre8745 11 днів тому +1

    Bom dia Mestre

    • @PreMath
      @PreMath  11 днів тому

      Hello dear❤️
      Thanks ❤️

  • @sergioaiex3966
    @sergioaiex3966 11 днів тому +1

    Solution:
    tan 15° = h/b
    h = b . tan 15° ... ¹
    Area = 2
    b h = 2 ... ²
    Replacing ¹ in ²
    b. (b . tan 15°) = 2
    b² = 2/tan 15°
    b ≈ 2.7321 Units ✅
    2.7321 . h = 2
    h ≈ 0.7321 Units ✅

    • @PreMath
      @PreMath  11 днів тому

      Excellent!
      Thanks for sharing ❤️

  • @abeonthehill166
    @abeonthehill166 11 днів тому +1

    Another super and well explained demonstration ! Thanks for sharing Professor .
    I came across this question ,……..the average age of Men and Women in a group is 25 yrs .
    ….if the ave age of the Men is 27 and, the ave age of the Women is 20
    What is the percentage of : Males , Females ?
    I calculated thus …: 27m +20w = 25m + 25w ……2m=5w ……..ratio 2:5 ….2 men for every 5 women this equates to 2/7 men and 5/7 women
    200/7 = 28.571429% men
    500/7 = 71.428571% women .
    Although the question was only to ascertain the percentage in this group that were men and what percentage were women …..
    Is it possible with the available information to calculate the number of men and number of women ? ……is there an equation to calculate this enigma ?
    Thanks

    • @PreMath
      @PreMath  11 днів тому

      Your first part answer is correct!
      With given info, it's not possible to calculate the exact number of men and women!
      Thanks for sharing the interesting enigma😀

    • @abeonthehill166
      @abeonthehill166 11 днів тому

      @@PreMath …..Thanks Professor 🙏😉

  • @joeschmo622
    @joeschmo622 11 днів тому

    I just "cheated" and looked up *tan(15) = 2 - sqrt(3)* as I remembered it was something like that and didn't want to convert to decimals. So 2 = xy = (x)(x*(2-sqrt(3)) = x^2 * (2-sqrt(3)), then pretty much followed the rest of the steps to find x, then y.

  • @mohanlal3898
    @mohanlal3898 10 днів тому

    How can possible if we divide a rectangle than one angle 15 degree.

  • @davidseed2939
    @davidseed2939 9 днів тому

    note diagonal.is 2ζ2

  • @shaozheang5528
    @shaozheang5528 11 днів тому

    Now I’m trying to find tan(40) / tan(50) with drawing auxiliary lines.

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 11 днів тому +1

    STEP-BY-STEP RESOLUTION PROPOSAL :
    01) AB = X
    02) BC = Y
    03) X * Y = 2
    04) tan(15º) = Y / X
    05) tan(15º) ~ 0,268
    06) 0,268 ~ Y / X
    07) System of Equations :
    a) Y / X ~ 0,268 ; Y ~ 0,268X
    b) X * Y ~ 2 ; X * (0,268X) = 2 ; 0,268X^2 = 2 ; X^2 = 7,5 ; X = 2,732
    08) Y = 0,268 * 2,732 ; Y = 0,732
    Therefore,
    OUR BEST ANSWER :
    Length AB ~ 2,732 Linear Units, and
    Length BC ~ 0,732 Linear Units

    • @PreMath
      @PreMath  11 днів тому +1

      Excellent!
      Thanks for sharing ❤️

  • @misterenter-iz7rz
    @misterenter-iz7rz 10 днів тому

    Generally, x=y/cos 2t+y/tan 2t, tan t=y/x=1/(1/cos 2t+1/tan 2t)=😅😅😅😅😅😅😅

  • @spdas5942
    @spdas5942 11 днів тому

    Sqrt6,sqrt(2/3).

  • @wasimahmad-t6c
    @wasimahmad-t6c 11 днів тому

    90-15=75÷15=5)(0×0=0×5=0 area

    • @PreMath
      @PreMath  11 днів тому

      Thanks for the feedback ❤️

  • @lasalleman6792
    @lasalleman6792 11 днів тому

    Hard to see how a rectangle (ABCD) with an agree-upon area of 2 units, somehow becomes a new rectangle with 4.7229 units.

  • @misterenter-iz7rz
    @misterenter-iz7rz 10 днів тому

    It is interesting that how to prove tan 15=(rt 3-1)/(rt 3+1)😮

  • @jasongoldman3850
    @jasongoldman3850 11 днів тому

    Is E the midpoint?

    • @Abby-hi4sf
      @Abby-hi4sf 11 днів тому +1

      No it is a point picked to give us gives us (30° at E and 60° at C) to use the 30° 60° 90° special triangle rules . Check it @4:13

    • @jasongoldman3850
      @jasongoldman3850 11 днів тому

      @@Abby-hi4sf Makes sense.

  • @shaozheang5528
    @shaozheang5528 11 днів тому

    I have method without trigonometry

    • @PreMath
      @PreMath  11 днів тому

      Thanks for the feedback ❤️