Find area of the Yellow shaded region in the quarter circle | (Blue rectangle) |

Поділитися
Вставка
  • Опубліковано 7 січ 2025

КОМЕНТАРІ • 33

  • @bigm383
    @bigm383 Рік тому +2

    👍🍻❤

    • @PreMath
      @PreMath  Рік тому

      Many thanks ❤️🌹

  • @doreenkilfoil5057
    @doreenkilfoil5057 Рік тому +10

    You only found one of two possible solutions.
    You arrived at x=8, y=6. However, a valid solution also happens when x=6, y=8.
    In that case, the yellow area is smaller than the unshaded white area to the right. Theta would be the complement of your 53.13deg.
    Basically this second solution would visually ‘flip’ your solution around the line OB.
    A quick calculation is to subtract the blue rectangle area + yellow region region from the total area of the quarter circle pi * 10 * 10 / 4.

    • @sreedharankp9878
      @sreedharankp9878 Рік тому

      Yes

    • @jean-pierregruyer4295
      @jean-pierregruyer4295 Рік тому

      Addition et multiplication son des operations commutatives donc : xy =yx et y^2+x^2 = x^2+y^2

    • @Doonburn
      @Doonburn Рік тому +1

      I agree. The point where the original workings go wrong is where he jumps from (x-y)^2 = 4 to the conclusion that x -y = 2, thereby missing the other possible solution, x-y = -2.

    • @mensaswede4028
      @mensaswede4028 11 місяців тому

      Exactly. I was looking at the thumbnail and noticed that the diagram is symmetric about the diagonal of the rectangle, so there must be 2 solutions. Unless the rectangle turned out to be a square, in which case the 2 solutions are the same.

  • @murdock5537
    @murdock5537 Рік тому +1

    Nice, many thanks, Sir! For small θ → sin⁡(θ) ≈ θ (radians) → no calculator needed:
    φ = 30°; r = QO = PO = BO = 10; ∎ABCO → AO = BC = b → AP = r - b; CO = a → CQ = r - a
    ab = 48 → b = 48/a → r^2 = 100 = a^2 + (48/a)^2 → a = 6 → b = 8
    ∆ BCO → COB = δ → sin⁡(δ) = b/r = 4/5 → cos⁡(δ) = a/r = 3/5
    sin⁡(3φ/2) = cos⁡(3φ/2) = √2/2
    sin⁡(θ) = sin⁡(δ - 3φ/2) = sin⁡(δ)cos⁡(3φ/2) - sin⁡(3φ/2)cos⁡(δ) = √2/10
    6φ/π = rad ≈ 57,3° → (rad)(√2/10) = 8,1° → 8,1° + 3φ/2 = 53,1° → 100π(53,1°/360°) - 24 ≈ 22,34 🙂

  • @Ibrahimfamilyvlog2097l
    @Ibrahimfamilyvlog2097l Рік тому

    Nice sharing 🌹👌🌹👌

  • @thefunpolice
    @thefunpolice Рік тому

    Your solution assumes that (x-y) = 2 and not (x-y) = -2, which would have resulted, instead, with x = 6 and y = 8.
    If we assume the diagram is not drawn to scale, as we are warned at 0:42, this second solution must also be considered. This means we should locate two possible solutions and not just one.
    So I get the area is either A ~ 22.36 cm^2 or A ~ 8.176cm^2.

  • @ybodoN
    @ybodoN Рік тому +1

    Given the usual warning about the scale of the diagram, let's make it clear that x > y.
    Then note that 48 is 6 × 8, a perfect match to 10 for a 3 : 4 : 5 Pythagorean triangle.
    So, with angles in radians, the yellow area will be ½ (10² arcsin ⅘ − 48) ≈ 22.36 cm².

  • @ramanivenkata3161
    @ramanivenkata3161 Рік тому

    Well explained.

  • @marioalb9726
    @marioalb9726 Рік тому +1

    Rectangle área :
    A = x.y = 48 cm²
    R sin α . R cos α = 48
    sin α cos α = 48 / R²
    ½ sin(2α) = 48/10²
    α = 36,8699° / 53,1301°
    Area angular sector
    A = ½.R².α
    A = ½ R² 53,1301° π/180
    A = 46,365 cm²
    Area right triangle:
    A = 48/2 = 24 cm²
    Yellow shaded area:
    A = A₂ - A₁
    A = 22,365 cm² ( Solved √ )
    Is not necessary to calculate 'x' and 'y', base and height of rectangle.

  • @nandisaand5287
    @nandisaand5287 5 місяців тому

    Your "action plan" in the beginning doesnt mention "sector area" or angles at all, just x and y.
    So I solved it with brute for:
    y=48/x
    x²+(48/x)²=(10)²
    ...
    x⁴-100x²+2304=0
    x²=36 or 64
    x=6 or 8
    My only question was how do we assign which side 6 or 8?
    I went with: by visual inspection, x>y.

  • @Copernicusfreud
    @Copernicusfreud Рік тому

    Yay! I solved the problem, and pretty much the same way as in the video.

  • @MrPaulc222
    @MrPaulc222 6 місяців тому

    Back catalogue time :)
    Diagonal (r) is 10, so rectangle sides must be 6 and 8.
    By trigonometry,

  • @devondevon4366
    @devondevon4366 Рік тому

    22.364
    Easy
    The rectangle can be divided into a two 3-4-5 triangle with degrees 53.13. and 38.87
    Since radius is 10, and the degree is 53.13, the area of the sector is
    53.13/360 * 10^2. 3.14 = 46.34
    subtract half of the retangle 48/2= 24 from the above
    46.34- 24 =22.364

  • @raya.pawley3563
    @raya.pawley3563 Рік тому

    Thank you

  • @JSSTyger
    @JSSTyger Рік тому

    Here's how I did it. For the blue rectangle, I used a hypotenuse of 10, a height of L, and a width of 48/L. I created triangle BOA. I called angle BOA Θ. I used the double angle formula, sin(2Θ) = 2sin(Θ)cos(Θ), to nicely eliminate the "L" variable and get sin(2Θ) = 73.74°. That was the main trick. My final answer was A = 22.36°.

  • @thewolfdoctor761
    @thewolfdoctor761 Рік тому +1

    I got x and y using bisecting chords theorem. (10+y) * (10-y) = x^2; we know xy=48 so substitute 48/y for x. Get 100-y^2 = 2304/y^2 ; substitute t for y^2 ; Get 100t - t^2 = 2304 ; Use quadratic formula to solve for t and get t=36, so y = 6. So x=8. I knew we'd have to find the area of sector OBQ, given angle theta. I got sin(theta) = 0.8. So inverse sine gets theta. I got stuck here because I didn't think we were allowed to use a calculator.

    • @murdock5537
      @murdock5537 Рік тому

      There is a way to solve it (approx.) without calculator, see above.

  • @mathbynisharsir5586
    @mathbynisharsir5586 Рік тому +1

    Amazing sir

    • @PreMath
      @PreMath  Рік тому

      Thanks and welcome ❤️

  • @selcukbilisik7374
    @selcukbilisik7374 Рік тому

    There are 2 solutions
    Equation 4 x-y=-2 is also possible

  • @giuseppemalaguti435
    @giuseppemalaguti435 Рік тому

    Dai dati risulta b=8,h=6(Pitagora)...Ay=1/4πr^2-((r^2/2)arctg(h/b)+24)=25π-(50arctg6/8+24)=25π-24-50arctg3/4=22,36476

  • @williamwingo4740
    @williamwingo4740 Рік тому

    Let x be the width of the blue rectangle and y the height. then, invoking Pythagoras:
    x^2 + y^2 = 10^2 = 100. BUT y = 48/x. Therefore, performing this substitution:
    x^2 + 48^2/x^2 = 100; carrying out the square operation:
    x^2 + 2304/x^2 = 100; multiplying through by x^2:
    x^4 + 2304 = 100(x^2); rearranging:
    x^4 -- 100(x^2) + 2304 = 0; solving for x^2 by the quadratic formula:
    x^2 = (100 +/-- sqrt(100^2 -- (4)(2304)))/2; carrying out the arithmetic operations:
    x^2 = (100 +/-- sqrt(784))/2 = (100 +/-- 28)/2
    = either 128/2 = 64; or 72/2 = 36; taking the square roots, we find that x = 8 and y = 6.
    Now consider the arc OQB. Angle OQB = arctan(8/6) = 53.13 degrees;
    so the area of this pie slice is (100 pi)(53.13)/(360) = 14.76 pi.
    Subtract half the area of the rectangle (24 square units) and we have 14.76 pi -- 24 = approximately 22.37 for the yellow region.
    Veni, vidi, vici! 🤠

  • @ganymed1236
    @ganymed1236 Рік тому

    Or 8.17 square if you change x and y😊

  • @rajendraameta7993
    @rajendraameta7993 Рік тому

    It's 3 ,4 ,5 type rt triangle

  • @quigonkenny
    @quigonkenny 9 місяців тому

    let AB = a and OA = b. Draw radius OB.
    Rectangle OABC:
    A = OA(AB) = ab
    ab = 48 ---- (1)
    b = 48/a
    Triangle ∆OAB:
    AB² + OA² = OB²
    a² + b² = 10² ---- (2)
    a² + (48/a)² = 100
    a² + 48²/a² - 100 = 0
    a⁴ - 100a² + 48² = 0
    a⁴ - 8²a² - 6²a² + 48² = 0
    a²(a²-8²) - 6²(a²-8²) = 0
    (a²-8²)(a²-6²) = 0
    a² = 8² | a² = 6²
    a = 8 ❌ | a = 6 a
    b = 48/8 | b = 48/6
    b = 6 ❌ | b = 8 a
    Sector BOP:
    sin(θ) = 6/10 = 3/5
    θ = sin⁻¹(3/5) ≈ 36.87°
    A = (θ/360)πr²
    A ≈ (36.87/360)π10²
    A ≈ 10.24π
    By observation, the yellow area is the area of quarter circle O, minus rectangle OABC, minus sector BOP, plus triangle ∆OAB.
    A ≈ πr²/4 - 48 - 10.24π + 24
    A ≈ 25π - 24 - 10.24π
    A ≈ 14.76π - 24 ≈ 22.36 cm²

  • @-wx-78-
    @-wx-78- Рік тому

    Diagonal 10, area 48 - it's egyptian 6×8. 😉

  • @DB-lg5sq
    @DB-lg5sq Рік тому

    Deux cas
    53,13 puis 90 -53,13

  • @prossvay8744
    @prossvay8744 Рік тому

    Yellow region=22.36 square unit

  • @unknownidentity2846
    @unknownidentity2846 Рік тому +2

    Let's solve this problem:
    .
    ..
    ...
    ....
    .....
    With a=AO=BC, b=AB=CO, A=A(blue) and R being the radius of the circle we have:
    ab = A
    a² + b² = R²
    a² + (A/a)² = R²
    a² + A²/a² = R²
    a⁴ + A² = R²a²
    a⁴ − R²a² + A² = 0
    a² = R²/2 ± √(R⁴/4 − A²)
    a² = (10cm)²/2 ± √((10cm)⁴/4 − (48cm²)²)
    a² = 100cm²/2 ± √(10000cm⁴/4 − 2304cm⁴)
    a² = 50cm² ± √(2500cm⁴ − 2304cm⁴)
    a² = 50cm² ± √(196cm⁴)
    a² = 50cm² ± 14cm²
    ⇒ a² = 64cm² ⇒ a = 8cm ⇒ b = 6cm
    ∨ a² = 36cm² ⇒ a = 6cm ⇒ b = 8cm
    The size of the yellow area is the difference between the area of the circle sector OBQ and the triangle OBC:
    A(yellow) = A(circle sector OBQ) − A(triangle OBC)
    A(yellow) = πR²*(∠BOQ/2π) − ab/2
    A(yellow) = R²*(∠BOQ/2) − ab/2
    A(yellow) = R²*(∠BOC/2) − ab/2
    A(yellow) = R²*(arctan(a/b)/2) − ab/2
    First case: a = 8cm / b = 6cm
    A(yellow) = (10cm)²*(arctan(8/6)/2) − (8cm)*(6cm)/2
    A(yellow) = 50cm²*arctan(4/3) − 24cm²
    A(yellow) ≈ 22.36cm²
    Second case: a = 6cm / b = 8cm
    A(yellow) = (10cm)²*(arctan(6/8)/2) − (6cm)*(8cm)/2
    A(yellow) = 50cm²*arctan(3/4) − 24cm²
    A(yellow) ≈ 8.175cm²
    Best regards from Germany