Justify your answer | Find Blue shaded Triangle area | (Rectangle) |

Поділитися
Вставка
  • Опубліковано 15 лис 2024
  • Learn how to find the area of the Blue shaded Triangle. Important Geometry and Algebra skills are also explained: area of a triangle formula; Pythagorean Theorem. Step-by-step tutorial by PreMath.com
    Today I will teach you tips and tricks to solve the given olympiad math question in a simple and easy way. Learn how to prepare for Math Olympiad fast!
    Step-by-step tutorial by PreMath.com
    • Justify your answer | ...
    Need help with solving this Math Olympiad Question? You're in the right place!
    I have over 20 years of experience teaching Mathematics at American schools, colleges, and universities. Learn more about me at
    / premath
    Justify your answer | Find Blue shaded Triangle area | (Rectangle) | #math #maths | #geometry
    Olympiad Mathematical Question! | Learn Tips how to solve Olympiad Question without hassle and anxiety!
    #FindBlueTriangleArea #PythagoreanTheorem #AreaOfTriangle #SimilarTriangles #Geometry #CongruentTriangles #IsoscelesTriangles #RightTriangles #Triangle #AreaOfSquare #CircleTheorem #GeometryMath #EquilateralTriangle #PerpendicularBisectorTheorem
    #MathOlympiad #ThalesTheorem #RightTriangle #RightTriangles
    #PreMath #PreMath.com #MathOlympics #HowToThinkOutsideTheBox #ThinkOutsideTheBox #HowToThinkOutsideTheBox? #FillInTheBoxes #GeometryMath #Geometry #RightTriangles
    #OlympiadMathematicalQuestion #HowToSolveOlympiadQuestion #MathOlympiadQuestion #MathOlympiadQuestions #OlympiadQuestion #Olympiad #AlgebraReview #Algebra #Mathematics #Math #Maths #MathOlympiad #HarvardAdmissionQuestion
    #MathOlympiadPreparation #LearntipstosolveOlympiadMathQuestionfast #OlympiadMathematicsCompetition #MathOlympics #CollegeEntranceExam
    #blackpenredpen #MathOlympiadTraining #Olympiad Question #GeometrySkills #GeometryFormulas #Angles #Height
    #MathematicalOlympiad #OlympiadMathematics #CompetitiveExams #CompetitiveExam
    How to solve Olympiad Mathematical Question
    How to prepare for Math Olympiad
    How to Solve Olympiad Question
    How to Solve international math olympiad questions
    international math olympiad questions and solutions
    international math olympiad questions and answers
    olympiad mathematics competition
    blackpenredpen
    math olympics
    olympiad exam
    olympiad exam sample papers
    math olympiad sample questions
    math olympiada
    British Math Olympiad
    olympics math
    olympics mathematics
    olympics math activities
    olympics math competition
    Math Olympiad Training
    How to win the International Math Olympiad | Po-Shen Loh and Lex Fridman
    Po-Shen Loh and Lex Fridman
    Number Theory
    There is a ridiculously easy way to solve this Olympiad qualifier problem
    This U.S. Olympiad Coach Has a Unique Approach to Math
    The Map of Mathematics
    mathcounts
    math at work
    Pre Math
    Olympiad Mathematics
    Two Methods to Solve System of Exponential of Equations
    Olympiad Question
    Find Area of the Shaded Triangle in a Rectangle
    Geometry
    Geometry math
    Geometry skills
    Right triangles
    imo
    Competitive Exams
    Competitive Exam
    Calculate the Radius
    Equilateral Triangle
    Pythagorean Theorem
    Area of a circle
    Area of the sector
    Right triangles
    Radius
    Circle
    Quarter circle
    coolmath
    my maths
    mathpapa
    mymaths
    cymath
    sumdog
    multiplication
    ixl math
    deltamath
    reflex math
    math genie
    math way
    math for fun
    Subscribe Now as the ultimate shots of Math doses are on their way to fill your minds with the knowledge and wisdom once again.

КОМЕНТАРІ • 67

  • @Buy_YT_Views_721
    @Buy_YT_Views_721 5 місяців тому +3

    This video is pure entertainment. ✨

    • @PreMath
      @PreMath  5 місяців тому

      Thanks for the feedback ❤️🌹

  • @ОльгаСоломашенко-ь6ы
    @ОльгаСоломашенко-ь6ы 5 місяців тому +4

    X/sin(45°)=4√10/ sin(180°-45°-< DAE). Синус суммы находим по формуле, используя соотношения в ∆AEB.
    AD=x=10.

  • @prossvay8744
    @prossvay8744 5 місяців тому +5

    Let BE=x
    Area of the triangle ABE=24cm^2
    1/2(12)(x)=24
    so x=4cm
    Tan(AEB)=12/4=3
    So LAEB=71.57°
    LCED=180-(45+71.57°)=63.43°
    Tan(63.43°)=12/CE
    So CE=6cm
    Area of the Blue triangle=1/2(12)(6)=36cm^2.❤❤❤

    • @PreMath
      @PreMath  5 місяців тому +1

      Excellent!
      Thanks for sharing ❤️

    • @Irishfan
      @Irishfan 4 місяці тому

      This is how I would have done this problem right from the start.

  • @waheisel
    @waheisel 5 місяців тому +2

    An out of the way formula is useful for this one: For two angles that add to 45 degrees (e.g. EAB and CDA), if tan A=a/b then tan D=(b-a)/(b+a). Here a=4 and b=12. So tan D=1/2 and x=6. Here are a couple nice proofs of the formula; ua-cam.com/video/TrgQJM1Xkf8/v-deo.html I love my exciting daily puzzle, Thanks PreMath!

    • @PreMath
      @PreMath  5 місяців тому +1

      Glad to hear that!
      You are very welcome!
      Thanks for the feedback ❤️

  • @nandisaand5287
    @nandisaand5287 3 дні тому

    I used Trigonometry:
    Angle(EAB)=€=Angle(FEA) {Side/Angle/Side}
    Angle(DEF)=¥=Angle(EDC) {Side/Angle/Side}
    Tan€=4/12
    €=ArcTan(4/12)=18.43°
    €+¥=45°
    ¥=45°-€=26.57°
    Tan¥=(X/12)
    X=12•Tan(26.57°)=6
    Area=½•12•6=36cm²

  • @marcgriselhubert3915
    @marcgriselhubert3915 5 місяців тому +2

    EB = 48/12 = 4. Let t = angleAEB,
    In triangle ABE: tan(t) = AB/AB = 12/4 = 3
    Let u = angleDEC, We have t + u + 45° = 180°,
    so u = 135° -t and tan(u) = tan(135° -t)
    tan(u) = (tan(135°) - tan(t))/(1 + tan(135°).tan(t))
    = (-1 -3)/(1+ (-1).(3)) =-4/-2 = 2
    In triangle DEC: tan(u) = 2 = DE/EC = 12/EC, sonEC =6
    Finally the area of the blue triangle is (1/2).12.6 = 36.

    • @PreMath
      @PreMath  5 місяців тому +1

      Excellent!
      Thanks for sharing ❤️

  • @jarikosonen4079
    @jarikosonen4079 3 місяці тому

    What happens if this is substituted to the Heron's formula as a=x+4, b=4*sqrt(10), c=sqrt(x^2+144), s=(a+b+c)/2 and set equal to 6x+24 ?
    (That could be required if angle is not 30°, 45°, 60° with no solution to the sin(angle))
    Should the Heron's formula result to the same result 6x+24 and task would not get completed with it this case...?

  • @adgf1x
    @adgf1x 5 місяців тому

    trgl ADE and sq ABCD are having with same baseAD and between same parllelsAD and BC.Area trgl ADE=1/2*area sq ABCD=144/2=72 sq cm.so ar of blue trgl=144-72-24=48 sq cm.ans

  • @montynorth3009
    @montynorth3009 5 місяців тому +2

    Green triangle area = 24.
    1/2 x 12 x EB = 24.
    EB = 4.
    Tan BEA = 12 / 4 = 3.
    Angle BEA = 71.565 degrees.
    Blue triangle.
    Angle DEC = 180 - 71.565 - 45 = 63.435 degrees.
    Tan 63.435 = 12 / CE.
    CE = 12 / 2 = 6.
    Area = 1/2 x 6 x 12 = 36.

    • @PreMath
      @PreMath  5 місяців тому +1

      Excellent!
      Thanks for sharing ❤️

  • @phungpham1725
    @phungpham1725 5 місяців тому +2

    1/ EB= 4cm so AE= 4sqrt10
    2/ From D drop the height DH to AE.
    The angle ADH=angle EAB ( the sides are perpendicular) so the two triangles ADH and EAB are similar.
    Label DH= h-> h/AH=AB/AE=12/4=3
    Notice that the triangle DHE is an right isosceles so h= HE-> AH/1= HE/3=(AH+HE)/4=4sqrt10/4
    -> h=3sqrt10 and AH=sqrt10 12:47
    -> DA =sqrt(sqh+sqAH)=sqrt100=10
    -> EC=6-> Area of the blue triangle=36 sq cm

    • @PreMath
      @PreMath  5 місяців тому +1

      Excellent!
      Thanks for sharing ❤️

  • @mattsta1964
    @mattsta1964 5 місяців тому +3

    I solved it using trig rather than algebra. Nice algebra solution!

    • @PreMath
      @PreMath  5 місяців тому

      Excellent!
      Thanks for the feedback ❤️

  • @ChuzzleFriends
    @ChuzzleFriends 4 місяці тому

    ABCD is a rectangle.
    By the Parallelogram Opposite Sides Theorem, AB = 12.
    A = (bh)/2
    24 = (12 * h)/2
    6h = 24
    h = 4
    So, BE = 4 cm.
    Label CE = x. Then BC = x + 4 cm.
    Draw an altitude of △AED from E to a point F on base AD. This divides rectangle ABCD into two smaller rectangles with a pair of congruent triangles each.
    Because △ABE ≅ △AFE, the area of △AFE is 24 cm².
    A = (bh)/2
    = (12 * x)/2
    = 6x
    Because △DCE ≅ △DFE, the area of △DFE is 6x cm².
    △AFE & △DFE combine to form △AED.
    So, the area of △AED is 6x + 24 cm².
    But then we can also find the area of △AED by using the side-sine area formula.
    Find AE & DE. Use the Pythagorean Theorem.
    a² + b² = c²
    12² + 4² = (AE)²
    (AE)² = 144 + 16
    = 160
    AE = √160
    = (√16)(√10)
    = 4√10
    12² + x² = (DE)²
    (DE)² = x² + 144
    DE = √(x² + 144)
    A = 1/2 * a * b * sinC
    = 1/2 * 4√10 * √(x² + 144) * sin(45°)
    = 2√10 * √(x² + 144) * sin(45°)
    = √40 * √(x² + 144) * sin(45°)
    = √[40 * (x² + 144)] * sin(45°)
    = √(40x² + 5760) * sin(45°)
    = √(40x² + 5760) * [(√2)/2]
    2A = √(40x² + 5760) * √2
    2(6x + 24) = √(40x² + 5760) * √2
    12x + 48 = √[2 * (40x² + 5760)]
    = √(80x² + 11520)
    (12x + 48)² = [√(80x² + 11520)]²
    144x² + 1152x + 2304 = 80x² + 11520
    64x² + 1152x + 2304 = 11520
    64x² + 1152x - 9216 = 0
    x² + 18x - 144 = 0 (Factorable)
    x² + 24x - 6x - 144
    x(x + 24) - 6(x + 24)
    (x - 6)(x + 24) = 0
    x - 6 = 0 or x + 24 = 0
    x = 6 x = -24
    But x represents the length of a segment and it can't be negative, so x ≠ -24 & x = 6.
    Finally, find the area of △DCE. Substitute x = 6.
    A = (bh)/2
    = (12 * 6)/2
    = 72/2
    = 36
    So, the area of the blue triangle is 36 square centimeters.

  • @calvinmasters6159
    @calvinmasters6159 5 місяців тому +5

    I was with you up to EB=4
    Then arc tan 12/4 = 71.6 deg
    180 - 45 - 71.6 = 63.4
    height blue triang = 12/tan 63.4
    = 6
    A(blu) = 6 * 12 / 2 = 36 Enjoyable. Send more.

  • @binondokhaliljustinb.5709
    @binondokhaliljustinb.5709 5 місяців тому +2

    Another solution!
    If you extend the line DE, then name it point F, you can get the angle BEF, angle BEF is equivalent to angle DEC since they are alternate angle. To get angle BEF, you first need to get angle AEB. Then you can now get the length of EC.

    • @PreMath
      @PreMath  5 місяців тому +1

      Thanks for the feedback ❤️

  • @jimlocke9320
    @jimlocke9320 5 місяців тому +2

    As phungpham1725 did, I dropped a perpendicular from D to AE, let's call the intersection F. From the Pythagorean theorem, after finding that BE = 4 (2:24 in the video), AE has length 4√10. We note that

    • @PreMath
      @PreMath  5 місяців тому +1

      Excellent!
      Thanks for sharing ❤️

  • @moroofoloruntola199
    @moroofoloruntola199 5 місяців тому +1

    this can be solved in an easier way than the method here. finding angle AEB =71. then get angle DEC, s 180-45-71. then use tan =Opposite over adjacent then you get x easily and find the blue area

    • @PreMath
      @PreMath  5 місяців тому +1

      Thanks for the feedback ❤️

  • @unknownidentity2846
    @unknownidentity2846 5 місяців тому +3

    Let's find the area:
    .
    ..
    ...
    ....
    .....
    The green triangle is a right triangle, so we can conclude:
    A(green) = A(ABE) = (1/2)*AB*BE
    ⇒ BE = 2*A(ABE)/AB = 2*(24cm²)/(12cm) = 4cm
    By applying trigonometry we obtain:
    tan(∠AEB) = AB/BE = (12cm)/(4cm)= 3
    tan(∠BED)
    = tan(∠AEB + ∠AED)
    = [tan(∠AEB) + tan(∠AED)]/[1 − tan(∠AEB)*tan(∠AED)]
    = [3 + tan(45°)]/[1 − 3*tan(45°)]
    = (3 + 1)/(1 − 3*1)
    = 4/(−2)
    = −2
    tan(∠CED)
    = tan(∠BEC − ∠BED)
    = [tan(∠BEC) − tan(∠BED)]/[1 + tan(∠BEC)*tan(∠BED)]
    = [tan(180°) − (−2)]/[1 + tan(180°)*(−2)]
    = (0 + 2)/(1 − 0*2)
    = 2
    Now we are able to calculate the area of the blue right triangle:
    tan(∠CED) = CD/CE ⇒ CE = CD/tan(∠CED) = (12cm)/2 = 6cm
    A(blue) = A(CDE) = (1/2)*CD*CE = (1/2)*(12cm)*(6cm) = 36cm²
    Best regards from Germany

    • @PreMath
      @PreMath  5 місяців тому +1

      Excellent!👍
      Thanks for sharing ❤️🇺🇸

  • @adgf1x
    @adgf1x 4 місяці тому

    h=4,CE=8,ar.blue tr.=12×8/2=48 cm^2

  • @quigonkenny
    @quigonkenny 5 місяців тому

    Triangle ∆ABE:
    Area = bh/2 = AB(BE)/2
    24 =12BE/2 = 6BE
    BE = 24/6 = 4
    Let ∠BEA = θ and ∠DEC = α. α = 180°- 45°- θ = 135°- θ. tan(θ) = AB/BE = 12/4 = 3.
    tan(α) = tan(135°- θ)
    tan(α) = (tan(135°)-tan(θ))/(1+tan(135°)tan(θ))
    tan(α) = (-1-3)/(1+(-1)3)
    tan(α) = (-4)/(1-3) = -4/(-2) = 2
    CD/EC = 2
    12/EC = 2
    EC = 12/2 = 6
    Triangle ∆ECD:
    Area = bh/2 = CD(EC)/2
    Area = 12(6)/2 = 36 cm²

  • @misterenter-iz7rz
    @misterenter-iz7rz 5 місяців тому +2

    (a/12+4/12)/(1-a/36)=(a+4)/((36-a)/3)=1, 3a+12=36-a, 4a=24, a=6, therfore the answer is 12×6/2=36.😊

    • @PreMath
      @PreMath  5 місяців тому +2

      Excellent!
      Thanks for sharing ❤️

  • @VictorLonmo
    @VictorLonmo 5 місяців тому +2

    This was a fun question PreMath! I thought I was original by solving it with trig but based on the other comments I am not the only one...

    • @PreMath
      @PreMath  5 місяців тому +1

      Excellent!
      Glad to hear that!
      Thanks for the feedback ❤️

  • @JLvatron
    @JLvatron 5 місяців тому +1

    I used trig to solve this.
    I was discouraged by the heavy square roots.

  • @peterdavidsalamanca8404
    @peterdavidsalamanca8404 5 місяців тому +2

    Non-geometry problems please!

    • @PreMath
      @PreMath  5 місяців тому +1

      Sure! Please keep watching...
      Thanks for the feedback ❤️

  • @josephsalinas6725
    @josephsalinas6725 2 місяці тому

    Fiz utilizando a tangente. Bem mais simples.

  • @michaelkouzmin281
    @michaelkouzmin281 5 місяців тому +1

    brute force (i.e. with trigonometry):
    1. BE = 4cm;
    2. tg (AEF) = 4/12 = 1/3; AEF = atan(1/3);
    3. DAF = D45 - atan(1/3);
    4. tg(DAF) = x/12; => x= 12*tg(DAF) = 12 * tg(45-atan(1/3)) = 12 * (tg(45)-tg(atan(1/3)))/(1+tg(45)*tg(atan(1/3)) = 12* (1-1/3)/(1+1/3)= 12 * (2/3)/(4/3) = 12* (2/4) = 6 cm;
    5. Ablue = 12*x/2= 12*6/2= 36 sq cm.

    • @PreMath
      @PreMath  5 місяців тому

      Excellent!
      Thanks for sharing ❤️

    • @cebongkatro4073
      @cebongkatro4073 5 місяців тому

      Like minded

  • @wackojacko3962
    @wackojacko3962 5 місяців тому +6

    I take the long way home too cuz it's the scenic route . 🙂

    • @PreMath
      @PreMath  5 місяців тому +2

      You are blessed😀
      Right way to enjoy the life!
      Thanks for the feedback ❤️

  • @giuseppemalaguti435
    @giuseppemalaguti435 5 місяців тому +1

    CE=12/tg(180-45-arctg(12/4))=-12/tg(45+arctg3)=6...Ablue=12*6/2=36

    • @PreMath
      @PreMath  5 місяців тому +1

      Excellent!
      Thanks for sharing ❤️

    • @anthonycheng1765
      @anthonycheng1765 5 місяців тому

      By drawing EF//CD, it is much easier to handle this problem (use the captioned approach)

  • @calvinmasters6159
    @calvinmasters6159 5 місяців тому +3

    It's funny how what was tedious in high school can be enjoyable now.
    Like Shakespeare, which is wasted on highschoolers.

    • @PreMath
      @PreMath  5 місяців тому +1

      Very well said!
      Thanks for the feedback ❤️
      Stay blessed🌹

  • @olivierjosephdeloris8153
    @olivierjosephdeloris8153 4 місяці тому

    Possible avec la trigo, mais à un moment on a : tan(45 - atan(1/3)) = 0,5 qu'il est impossible à deviner sans calculatrice

  • @adgf1x
    @adgf1x 4 місяці тому

    48cm^2=ar blue shade.

  • @AmirgabYT2185
    @AmirgabYT2185 5 місяців тому +4

    S=36 square units

    • @PreMath
      @PreMath  5 місяців тому +2

      Excellent!
      Thanks for sharing ❤️

  • @MrPaulc222
    @MrPaulc222 2 місяці тому

    I used trig, so there was a tiny rounding error, but I put 36 as it was too close to not be!

  • @draketheduelist
    @draketheduelist 3 місяці тому

    I was looking at the thumbnail and going "...wait a second! Drawing not to scale!" You can't know for sure the quadrilateral shown is a rectangle from what we're given because you would have to be given the condition that (1) DA and CB are parallel or (2) either DAB or CDA are 90-degree angles, making the question unsolvable unless you know for a fact you're dealing with a rectangle.
    I hate it when the thumbnail doesn't give you everything you need to solve the problem.

  • @kalavenkataraman4445
    @kalavenkataraman4445 5 місяців тому +2

    36, Sq. Units

    • @PreMath
      @PreMath  5 місяців тому +1

      Excellent!
      Thanks for sharing ❤️

  • @Ashi-cq7tj
    @Ashi-cq7tj 5 місяців тому +3

    Me first again 😂😂

    • @PreMath
      @PreMath  5 місяців тому +1

      Excellent!
      Thanks ❤️

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 5 місяців тому +1

    STEP-BY-STEP RESOLUTION PROPOSAL :
    01) Angle DEC = alpha
    02) AD = BC = X
    03) CE = X - 4
    04) EB = 4 ; 48 / 12 = 4
    05) Area of Rectangle [ABCD] = A = 12 * X
    06) arctan(12/4) = arctan(3) ~ 71,6º
    07) 71,6º + 45º = 116,6º
    08) Alpha = 180º - 116,6º ~ 63,435º
    09) tan(63,435º) = 2
    10) 12 / (X - 4) = 2
    11) X = 10
    12) Total Area [ABCD] = 12 * 10 = 120
    13) Blue Area = (120 - 48) / 2 = 72 / 2 = 36
    14) ANSWER : Area of the Blue Triangle equal to 36 Square Centimeters.
    Greeting from The Center for Studies of Ancient Mathematical Thinking, Knowledge and Wisdom - Cordoba Caliphate!!

    • @PreMath
      @PreMath  5 місяців тому +1

      Excellent!🌹
      Thanks for sharing ❤️🙏

  • @sergeyvinns931
    @sergeyvinns931 5 місяців тому +2

    A=36!

    • @PreMath
      @PreMath  5 місяців тому +1

      Excellent!
      Thanks for sharing ❤️