Can you find area of the Yellow shaded region? | (Square and Circle) |

Поділитися
Вставка
  • Опубліковано 15 лис 2024
  • Learn how to find the area of the Yellow shaded region. Important Geometry and Algebra skills are also explained: Pythagorean theorem; area of the circle formula; area of the square formula. Step-by-step tutorial by PreMath.com
    Today I will teach you tips and tricks to solve the given olympiad math question in a simple and easy way. Learn how to prepare for Math Olympiad fast!
    Step-by-step tutorial by PreMath.com
    • Can you find area of t...
    Need help with solving this Math Olympiad Question? You're in the right place!
    I have over 20 years of experience teaching Mathematics at American schools, colleges, and universities. Learn more about me at
    / premath
    Can you find area of the Yellow shaded region? | (Square and Circle) | #math #maths | #geometry
    Olympiad Mathematical Question! | Learn Tips how to solve Olympiad Question without hassle and anxiety!
    #FindYellowArea #Square #Circle #GeometryMath #PythagoreanTheorem
    #MathOlympiad #IntersectingChordsTheorem #RightTriangle #RightTriangles
    #PreMath #PreMath.com #MathOlympics #HowToThinkOutsideTheBox #ThinkOutsideTheBox #HowToThinkOutsideTheBox? #FillInTheBoxes #GeometryMath #Geometry #RightTriangles
    #OlympiadMathematicalQuestion #HowToSolveOlympiadQuestion #MathOlympiadQuestion #MathOlympiadQuestions #OlympiadQuestion #Olympiad #AlgebraReview #Algebra #Mathematics #Math #Maths #MathOlympiad #HarvardAdmissionQuestion
    #MathOlympiadPreparation #LearntipstosolveOlympiadMathQuestionfast #OlympiadMathematicsCompetition #MathOlympics #CollegeEntranceExam
    #blackpenredpen #MathOlympiadTraining #Olympiad Question #GeometrySkills #GeometryFormulas #Angles #Height #ComplementaryAngles
    #MathematicalOlympiad #OlympiadMathematics #CompetitiveExams #CompetitiveExam
    How to solve Olympiad Mathematical Question
    How to prepare for Math Olympiad
    How to Solve Olympiad Question
    How to Solve international math olympiad questions
    international math olympiad questions and solutions
    international math olympiad questions and answers
    olympiad mathematics competition
    blackpenredpen
    math olympics
    olympiad exam
    olympiad exam sample papers
    math olympiad sample questions
    math olympiada
    British Math Olympiad
    olympics math
    olympics mathematics
    olympics math activities
    olympics math competition
    Math Olympiad Training
    How to win the International Math Olympiad | Po-Shen Loh and Lex Fridman
    Po-Shen Loh and Lex Fridman
    Number Theory
    There is a ridiculously easy way to solve this Olympiad qualifier problem
    This U.S. Olympiad Coach Has a Unique Approach to Math
    The Map of Mathematics
    mathcounts
    math at work
    Pre Math
    Olympiad Mathematics
    Two Methods to Solve System of Exponential of Equations
    Olympiad Question
    Find Area of the Shaded Triangle in a Rectangle
    Geometry
    Geometry math
    Geometry skills
    Right triangles
    imo
    Competitive Exams
    Competitive Exam
    Calculate the length AB
    Pythagorean Theorem
    Right triangles
    Intersecting Chords Theorem
    coolmath
    my maths
    mathpapa
    mymaths
    cymath
    sumdog
    multiplication
    ixl math
    deltamath
    reflex math
    math genie
    math way
    math for fun
    Subscribe Now as the ultimate shots of Math doses are on their way to fill your minds with the knowledge and wisdom once again.

КОМЕНТАРІ • 51

  • @anatoliy3323
    @anatoliy3323 4 місяці тому +9

    Very difficult at a glance and simple after your explanation. Thanks a lot for your nice task, Professor 💯👍

    • @PreMath
      @PreMath  4 місяці тому

      Glad you liked it🌹
      You are very welcome!
      Thanks for the nice feedback ❤️

  • @AlexanderRomadin
    @AlexanderRomadin 4 місяці тому +16

    Solved using the intersecting chord theorem. (x-3)^2=(x-4)x; x^2-6x+9=x^2-4x; 2x=9. Side of a square 9. r=x-2. Yellow shaded region 81-(x-2)^2Pi=81-25Pi/4.

    • @davyp42
      @davyp42 4 місяці тому +2

      I did the same 👍

    • @AmirgabYT2185
      @AmirgabYT2185 4 місяці тому +1

      ​@@davyp42+++

    • @allanflippin2453
      @allanflippin2453 4 місяці тому +2

      I also solved with this method. The math is much easier and one doesn't have to deal with two variables in an equation.

    • @DorothyMantoothIsASaint
      @DorothyMantoothIsASaint 4 місяці тому +2

      Intersecting Chords FTW

    • @Micboss1000
      @Micboss1000 4 місяці тому +3

      Same here, way easier, took me a minute at most.

  • @rabotaakk-nw9nm
    @rabotaakk-nw9nm 4 місяці тому +1

    PQ=a-3; 2r+4=2a => r=a-2
    OQ=r=a-2; OP=a-r=a-(a-2)=2 !!! 😁
    ΔOPQ: (a-2)²=2²+(a-3)² =>
    => a²-4a+4=4+a²-6a+9 =>
    => a=9/2 => r=9/2-2=5/2
    [yellow]=(2a)²-πr²=81-25π/4≈61.365

  • @MrPaulc222
    @MrPaulc222 4 місяці тому +2

    The side lengths of the square are 2r+4
    Therefore, the vertical chord length is 2r-2
    Chord intersection gives (r-1)(r-1) = (r+2)(r-2)
    r^2-2r+1 = r^2-4
    -2r+1 = -4
    2r-4 = 1, so r = 5/2
    ((10/2)+4) = 9 for square's sides.
    9^2 = 81
    Yellow area is 81 - (25/4)pi
    81 - 6.25pi = 81 - 19.635 = 61.365 (rounded).
    We took a different route, but arrived at the same place :)

  • @CloudBushyMath
    @CloudBushyMath 4 місяці тому +1

    Superb👍

  • @ludosmets2018
    @ludosmets2018 4 місяці тому +1

    The difference between the side of the square and the diameter of the circle = 4. So the distance between the circle and the top side = 2 (by symmetry). From this it can be deduced that PQ = r-1. And also that r+2= r+4 - OP, from which it follows that OP = 2. Pythagoras: r^2= (r-1)^2 + 4. So r= 2.5 and the side of the square = 2 (2.5) + 4 = 9. The rest is simple.

  • @prossvay8744
    @prossvay8744 4 місяці тому +1

    Let x is side length of the square
    ((x-6)/2)^2=x/2(x)2-(x-4)/2)
    So x=9
    Radius of the circle=(9-4)/2=5/2
    Ares of the yellow shaded region=81-π(5/2)^2=81-25π/4=61.37 square units.❤❤❤

  • @toninhorosa4849
    @toninhorosa4849 4 місяці тому

    I solved similar to you teacher.
    2r + 4 = 2a
    a = r + 2
    Focus ∆OPQ
    OQ = r
    OP = a - r
    OP = r + 2 - r
    OP = 2
    PQ = a - 3
    PQ = r+2 - 3
    PQ = r - 1
    Applying Pythagoras:
    r^2 = 2^2 + (r - 1)^2
    r^2 = 4 + r^2 - 2r + 1
    2r = 4 + 1
    r = 5/2
    2a = 2r + 4
    2a = 2*(5/2) + 4
    2a = 9
    Square area = 9^2
    Square area = 81
    Circle area = πr^2
    Circle area = π(5/2)^2
    Circle area = (25/4)π = 6,25π
    Yellow area = 81 - 6,25,π
    Yellow area = 61,365.. unit^2

  • @ChuzzleFriends
    @ChuzzleFriends 4 місяці тому

    Square ABCD was divided into four quadrants with origin P as stated in the beginning.
    So, four congruent segments extend from point P to the four sides of the square. These segments are the combined red-blue/blue ones shown in the diagram. So, FP = PT.
    Label EP = x. So, FP = PT = x + 4.
    PQ + 3 = x + 4
    PQ = x + 1
    Point O is also in the "x-axis". It is the center of a circle tangent to side AD. Label the point of tangency as G.
    Additionally, the starter information helps us deduce that origin P and the "axes" form right angles.
    By the Perpendicular Chord Bisector Theorem, diameter EG bisects chord QR (where R is the other endpoint of the chord). So, PR = x + 1.
    And GP = FP = x + 4. Use the Intersecting Chords Theorem.
    x(x + 4) = (x + 1)(x + 1)
    x² + 4x = x² + 2x + 1
    4x = 2x + 1
    2x = 1
    x = 1/2
    So, each congruent segment is 4.5 units long.
    The starter info suggests the "axes" intersect the midpoints of the sides of square ABCD. Plus, the four quadrants are also congruent squares themselves!
    So, square ABCD has sides that are 9 units long each.
    EG = (x + 4) + x
    = 2x + 4
    = 2(1/2) + 4
    = 1 + 4
    = 5
    So, the radius of ⊙O is 5/2 = 2.5 units long.
    Yellow Region Area = Square ABCD Area - ⊙O Area
    A = s²
    = 9²
    = 81
    A = πr²
    = π(5/2)²
    = π(25/4)
    = (25π)/4
    Yellow Region Area = 81 - (25π)/4
    So, the area of the yellow shaded region is 81 - (25π)/4 square units, a. w. a. (324 - 25π)/4 square units (exact), or about 61.37 square units (approximation).

  • @marcgriselhubert3915
    @marcgriselhubert3915 4 місяці тому

    Side length of the big square: 2.c
    Intersecting chord theorem: (c -3)^2 = c. c -4), so c = 9/2
    The area of the big square is (2.(9/2))^2 = 81
    R the radius of the circle: 2.R + 4 = 2. c, so R = 5/2
    The area of the circle is (25/4).Pi
    The yellow area is 81 - (25/4).Pi. That was very simple.

  • @yalchingedikgedik8007
    @yalchingedikgedik8007 4 місяці тому

    Thanks PreMath
    Thanks Sir
    Very useful to learn math
    With my respects
    ❤❤❤❤

  • @MarieAnne.
    @MarieAnne. 2 місяці тому

    I solved the same way, but started by solving for a in terms of r first:
    2a = 2r + 4 → a = r + 2
    Then we get:
    OP = a − r = (r + 2) − r = 2
    PQ = a − 3 = (r + 2) - 3 = r − 1
    PQ = r
    and using Pythagorean Theorem on △OPQ gives us:
    OQ² = OP² + PQ²
    r² = 2² + (r−1)²
    r² = 4 + r² − 2r + 1
    2r = 5
    r = 5/2
    Then solve for a:
    a = r + 2 = 5/2 + 2 = 9/2
    This makes calculations simpler than using Pythagorean Theorem with 2 variables and then substituting for a.
    We then continue as shown in video:
    Area = (2a)² − πr² = (9)² −π(5/2)² = 81 − 25π/4 ≈ 61.365

  • @phungpham1725
    @phungpham1725 4 місяці тому

    1/ 2r= 2a-4-> r=a-2 (1)
    2/ Using right triangle altitude theorem or chord theorem:
    sq PQ=OPxPE --> sq(a-3)=a(a-4)-> a= 9/2 the side of the square= 9
    and r= 5/2
    Area of yellow region= 81-pi.sq(5/2)=61.37 sq units😊

  • @zdrastvutye
    @zdrastvutye 4 місяці тому

    it is just 1 linear and 1 nonlinear equation with unknown dimensions la and r:
    10 vdu5:for a=0 to 15:gcola:print a:next a
    20 print "premath-can you find area of the yellow shaded region"
    30 dim x(3),y(3):l1=4:l2=3:sw=l1^2/(l2+l1)/10:print sw:la=l1+sw:goto 60
    40 h=la/2-l2:r=(la-l1)/2:lh=la/2:dgu1=(lh^2+h^2-4*r*r)/l1^2:dgu2=((2*r-lh)^2+h^2)/l1^2
    50 dg=dgu1+dgu2:return
    60 gosub 40
    70 dg1=dg:la1=la:la=la+sw:if la>100*l1 then stop
    80 la2=la:gosub 40:if dg1*dg>0 then 70
    90 la=(la1+la2)/2:gosub 40:if dg1*dg>0 then la1=la else la2=la
    100 if abs(dg)>1E-10 then 90
    110 print la,r
    120 x(0)=0:y(0)=0:x(1)=la:y(1)=0:x(2)=la:y(2)=la:x(3)=0:y(3)=la
    130 mass=850/la:goto 150
    140 xbu=x*mass:ybu=y*mass:return
    150 gcol 11:x=x(0):y=y(0):gosub 140:xba=xbu:yba=ybu:for a=1 to 4:ia=a:if ia=4 then ia=0
    160 x=x(ia):y=y(ia):gosub 140:xbn=xbu:ybn=ybu:goto 180
    170 line xba,yba,xbn,ybn:xba=xbn:yba=ybn:return
    180 gosub 170:next a:gcol 8:xm=r:ym=la/2:x=xm:y=ym:gosub 140:circle xbu,ybu,r*mass
    190 print "die gesuchte flaeche=";la^2
    200 print "run in bbc basic sdl and hit ctrl tab to copy from the results window"
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15 die gesuchte flaeche=81
    runminhbbcnbasicfsdl andahit ctrlytabotoscopydfromithe results window
    >.228571429
    9 2.5

  • @KipIngram
    @KipIngram Місяць тому

    Let R = circle radius. Then large square side is 2*R+4, thus small squares have side R+2. Length PE is thus R+2-4 = R-2. Thus length OP = 2. Length PT is also R+2, so length PQ is R+2-3 = R-1. By Pythagoras on OPQ,
    2^2 + (R-1)^2 = R^2
    4 + R^2 - 2*R + 1 = R^2
    5 - 2*R = 0
    R = 5/2
    Now we're golden. Big square area is (2*R+4)^2 = 81, circle area is pi*(5/2)^2 = 25*pi/4. So
    Yellow Area = 81 - 25*pi/4.
    Q.E.D.

  • @lior123
    @lior123 4 місяці тому

    I love your videos so much and I love to enjoy them every day, that much that I wish you could upload ten videos each day. Thank you for your excellent explanation as usual professor

  • @valuee5298
    @valuee5298 4 місяці тому

    Good math question 👍I solved this easier, it seems to me. I immediately found that the length of the segment OP is 2 and so on.

  • @devondevon4366
    @devondevon4366 4 місяці тому

    81 - 6.25 pi 61.365
    Let the side of the square = 2n
    then the diameter will = 2n - 4
    and its radius (2n-4)/2 = n -2 Hence , the distance OQ = n-2
    The distance from p to either side = 2n/2 = n ( since p is the center of the square and the square = 2n)
    Hence, the distance from the circle's center to p is n - (n-2 ) = 2
    Hence, the distance OP = 2
    The distance from Q to p= n -3 (since the p is the distance n from either side of the square)
    Let's construct a right triangle from the circle's center, OPQ.
    The radius is n -2 = the hypotenuse, and the other two legs have a distance of 2 and n-3
    then (n-2)^2 = 2^2 + (n-3)^2
    n^2 +4- 4n = 4 + n^2 + 9 -6n
    -4n +6n = 9 (since n^2 and 4, which have the same sign on both sides of the equation, cancel themselves out)
    2n = 9 Hence, the length of the square =9 and area = 81
    and n = 9/2 or 4.5
    and its radius which = 4.5 - 2 = 2.5 since the radius = n-2)
    Hence, the area of the circle = 2.5^2 pi or 6.25pi
    Hence, the area of the shaded region = 81 - 6.25pi
    or 61.365

  • @Micboss1000
    @Micboss1000 4 місяці тому

    If you calculate a=r+2 and substitute that from the start, the calculations become much simpler (but not as simple as intersecting chords theorem).

  • @nexen1041
    @nexen1041 4 місяці тому

    That was a great test. I have got tge same result using almost same approach. You rock 👍

  • @quigonkenny
    @quigonkenny 4 місяці тому

    Let x be the length of AT, so that 2x is the side length of square ABCD. Let r be the radius of circle O. Let M and N be the unnamed intersection points on DA and CD respectively.
    As ABCD is a square and assuming that T and F are the midpoints of AB and BC respectively and that ∠ATP = ∠BFP = 90°, then MF = TN = 2x.
    MF = OM + OE + EF
    2x = r + r+ 4 = 2r + 4
    x = (2r+4)/2 = r + 2
    From this, as MP = x and OM = r, OP = x-r = (r+2)-r = 2. QP = x-3 = (r+2)-3 = r-1.
    Triangle ∆OPQ:
    OP² + QP² = OQ²
    2² + (r-1)² = r²
    4 + r² - 2r + 1 = r²
    2r = 5
    r = 5/2
    x = r + 2 = 5/2 + 2 = 9/2
    The area of the yellow shaded region is equal to the area of square ABCD minus the area of circle O:
    Yellow shaded area:
    Aʏ = (2x)² - πr²
    Aʏ = 9² - π(5/2)²
    Aʏ = 81 - 25π/4 ≈ 61.365 sq units

  • @timeonly1401
    @timeonly1401 4 місяці тому

    @6:01 Once you got equations 1 & 2, it was less work to solve for r ( = a-2 ) and sub that expression into equation 1 to get:
    2a² - 6a - 2a(a-2) + 9 = 0
    2a² - 6a - 2a² + 4a + 9 = 0
    -2a + 9 = 0
    a = 9/2 = 4.5
    Then, r = a - 2 = 4.5 - 2 = 2.5.
    The rest is the same.

  • @LucasBritoBJJ
    @LucasBritoBJJ 4 місяці тому

    Since it is a Circle, QP + 3 mirrors down. I named QP as x, so TP x+3. So PE is TP-4, or x-1. Then, in AD center, I named a G point.
    So:
    1) GP*PE = QP ²
    (x+3)*(x-1) = x ²
    x ² = x ² + 3x - x - 3
    x = ³ ⁄ ₂
    TP = 3 + x = 3 + ³ ⁄ ₂ = ⁹ ⁄ ₂
    AB = ⁹ ⁄ ₂ * 2 = 9
    GO = ⁽ ⁹ ⁻ ⁴ ⁾ ⁄ ₂ = ⁵ ⁄ ₂
    Square area = 81
    Circle area = π(⁵ ⁄ ₂) ² = π * ²⁵⁄₄
    Yellow area = 81 - (π * ²⁵⁄₄)

  • @brettgbarnes
    @brettgbarnes 4 місяці тому

    2a = 2r + 4
    a = r + 2
    a - r = r + 2 - r
    a - r = 2
    a - 3 = r + 2 - 3
    a - 3 = r - 1
    r² = (a - r)² + (a - 3)²
    r² = (2)² + (r - 1)²
    r² = 4 + r² - 2r + 1
    2r = 4 + 1
    2r = 5
    r = 5/2
    2a = 2r + 4
    2a = 2(5/2) + 4
    2a = 5 + 4
    2a = 9
    Area = (2a)² - πr²
    Area = (9)² - π(5/2)²
    Area = 81 - 25π/4

  • @AmirgabYT2185
    @AmirgabYT2185 4 місяці тому +1

    S=81-25π/4=(324-25π)/4≈61,36

  • @unknownidentity2846
    @unknownidentity2846 4 місяці тому +1

    Let's find the area:
    .
    ..
    ...
    ....
    .....
    Let s be the side length of the square and let r be the radius of the circle. From the horizontal line through point P we can conclude:
    2*r + 4 = s ⇒ 2*r = s − 4 ⇒ r = (s − 4)/2
    The vertical line through point P intersects the circle at Q and Q'. For reasons of symmetry we know that PQ=PQ'=s/2−3. By applying the intersecting chords theorem we obtain:
    PE*(2*r − PE) = PQ*PQ'
    (s/2 − 4)*[(s − 4) − (s/2 − 4)] = (s/2 − 3)*(s/2 − 3)
    (s/2 − 4)*(s/2) = (s/2 − 3)*(s/2 − 3)
    s²/4 − 2*s = s²/4 − 3*s + 9
    ⇒ s = 9
    ⇒ r = 5/2
    Now we are able to calculate the area of the yellow region:
    A(yellow) = A(square) − A(circle) = s² − πr² = 9² − π*(5/2)² = 81 − (25/4)π ≈ 61.37
    Best regards from Germany

  • @pk2712
    @pk2712 4 місяці тому

    Nice job . In your equation 1 , there is only one r . I would substitute a-2 for r in equation 1 because it would result in less algebra to simplify . I guess it is just me --- kind of lazy .

  • @AdemolaAderibigbe-j8s
    @AdemolaAderibigbe-j8s 4 місяці тому

    Another approach is to use the product of the components of the intersecting chords at point P (in terms of r and a) to get the other equation to use with the equation r + 2 = a to get the same result.

  • @davidteo7421
    @davidteo7421 4 місяці тому

    Solve 2pq+6=2r+4=2PE+8, r=5/2

  • @juanalfaro7522
    @juanalfaro7522 4 місяці тому

    L = 2R+4 = 2Y+2*3 = 2Y+6. Now [2R-X] * X = Y^2. Now L/2 = R+2 = 4+X -> X=R-2. Now 2R-X = R+2. Now 2Y+6 = 2R+4 -> 2Y=2R-2 -> Y=R-1 --> [R+2] * [R-2] = (R-1) ^2 -> R^2 - 4 = R^2 - 2R+1 -> 2R=5 -> R=5/2. Now L = 2R+4 = 9. A(shaded) = L^2 - Pi*R^2 = 9^2 - Pi*25/4 = 81 - 25*Pi/4 = 81 - 19.63 = 61.37 sg. units.

  • @ยี่สิบเก้าพฤศจิกา

    เป็นความสุดยอดที่สุดและผมได้ฝึกฝนทุกวันเพื่อสอนลูกสาวของผม ขอบคุณอย่างมากครับ

  • @benoitdemarcillac1326
    @benoitdemarcillac1326 4 місяці тому

    Very nice ! In my point of view it was missing that P is the ce ter of the square…

  • @awandrew11
    @awandrew11 4 місяці тому

    Why not use intersecting chords in the circle:( r-1)x(r-1)=(r+2)x(r-2)?

  • @christopherellis2663
    @christopherellis2663 4 місяці тому

    14²-pix5²=117,42 a guess, but the method is correct

  • @misterenter-iz7rz
    @misterenter-iz7rz 4 місяці тому

    Seems to be difficult but simple puzzle, the answer is s=9/2, r=5/2, the area is 9^2-(5/2)^2 pi.😅

  • @devondevon4366
    @devondevon4366 4 місяці тому

    81-6.25 pi or 61.365

  • @brianlubanga4051
    @brianlubanga4051 4 місяці тому

    It only works if you assume that ABCD is a square.

  • @himadrikhanra7463
    @himadrikhanra7463 4 місяці тому

    4 × 49 - 49 pi
    = 49 × .27 ( approximately)?

  • @jamestalbott4499
    @jamestalbott4499 4 місяці тому

    Thank you!

  • @sergioaiex3966
    @sergioaiex3966 4 місяці тому

    (a - 4)² + (a - 3)² = QE²
    a² - 8a + 16 + a² - 6a + 9 = QE²
    2a² - 14a + 25 = QE²
    a² + (a - 3)² = MQ²
    a² + a² - 6a + 9 = MQ²
    2a² - 6a + 9 = MQ²
    MQ² + QE² = (2a - 4)²
    2a² - 6a + 9 + 2a² - 14a + 25 = 4a² - 16a + 16
    4a² - 20a + 34 = 4a² - 16a + 16
    4a = 18
    *a = 9/2*
    2r = 2a - 4
    r = a - 2
    r = 9/2 - 2
    r = 9/2 - 4/2
    r = 5/2
    Square Area = 9²
    Square Area = 81
    Circle Area = π (5/2)²
    Circle Area = 25π/4
    Yellow Shaded Region = 81 - 25π/4
    YSR = 324/4 - 25π/4
    *YSR = (324 - 25π)/4 Square Units*
    YSR = 61,3650459151
    *YSR ~= 61,37 Square Units*

  • @wackojacko3962
    @wackojacko3962 4 місяці тому

    After solving this problem I'm taking my skills to Papa John's and and design pizza boxes. ...seems like a viable skill for employment. I need a job. 🙂

  • @MegaSuperEnrique
    @MegaSuperEnrique 4 місяці тому +1

    You should set up a Patreon account so I can pay you monthly. Thanks!

    • @PreMath
      @PreMath  4 місяці тому

      Patreon account has been set up!
      Thank you very much for supporting my youtube channel. I really appreciate your kind donation. Stay blessed ❤️
      Kind regards🙏