an interesting sequence of integrals

Поділитися
Вставка
  • Опубліковано 29 гру 2024

КОМЕНТАРІ • 14

  • @brboLikus
    @brboLikus 9 місяців тому +13

    Using the substitution "u=(x-t)/(1-t)" on the starting integral turns this into single-line calculation.

  • @adenwellsmith6908
    @adenwellsmith6908 9 місяців тому +4

    I recently read a proof on the transcendental nature of pi.
    Niven's function, differentiation, Taylor's series, and Integration by parts, and a bit of combinatorics [trivial] and finally proof by contradiction. Very nice because it brings together 5 core concepts, to make a proof.
    Niven's function was interesting because it was a designed with certain properties, and that in itself is interesting as a challenge. Can you construct a function that has certain characteristics?

  • @aweebthatlovesmath4220
    @aweebthatlovesmath4220 9 місяців тому +1

    Yes! one of my favourite identities binomial series!! The case alpha not an postive integer is kinda not used alot which is what makes solution 1 awesome

  • @toanvong3825
    @toanvong3825 9 місяців тому +4

    At 6:36 why is it the integral from 0 to 1?

    • @yoav613
      @yoav613 9 місяців тому +9

      Yes it should be from 0 to x and after the sub u=t/x that he was talking about you will get integral from 0 to 1.he just skiped this step.

  •  2 місяці тому

    from Morocco thank you very much

  • @holyshit922
    @holyshit922 9 місяців тому +1

    We can use substitution v = (x-1)*1/(1-t)+1
    but integration by parts was my first idea

  • @Vladimir_Pavlov
    @Vladimir_Pavlov 9 місяців тому

    There is another way of calculating in this problem, which starts by differentiating the original integral J(x) by x as a parameter.
    At each next kth step of differentiation (k=1,2,...n), we will get that Jk(0)=0, while
    the n-th order derivative of this integral will be equal to Jn(x)=n! *[1/(1-x)^(n+1) -1] .
    At the same time Jk(x)=k! *[1/(1-x)^(k+1)], if k= n+1,n+2, ......
    and Jk(0)=k!, if k= n+1,n+2,......
    Note that J(0)=0 , and the Taylor-Maclaurin series has the form
    J(x)= J(0)+ Σ (from k=1 to k=∞) Jk(0)*x^ k/k!=Σ (from k=n+1 to k=∞)x^k =x^(n+1 )/(1- x).

  • @Nolord_
    @Nolord_ 9 місяців тому +1

    Isn't that more or less just the integral formula of the remainder of the series for 1/(1-x)??

  • @MartinPerez-oz1nk
    @MartinPerez-oz1nk 9 місяців тому +2

    THANKS PROFESOR !!!!!, VERY INTERESTING. !!!!!!

  • @stefanalecu9532
    @stefanalecu9532 9 місяців тому +1

    16:07 and that's a good place to stop

  • @yoav613
    @yoav613 9 місяців тому +1

    Very nice video.

  • @emanuellandeholm5657
    @emanuellandeholm5657 9 місяців тому

    I've been honing my skills. The first thing I thought was "aha! Beta-function".