thanks viewer for this nice limit!

Поділитися
Вставка
  • Опубліковано 16 січ 2025

КОМЕНТАРІ • 42

  • @afignisfirer4675
    @afignisfirer4675 18 днів тому +41

    Where is “And Thats a Good Place to Stop”???????

    • @felipevaldes7679
      @felipevaldes7679 18 днів тому +1

      My thoughts exactly

    • @jbthepianist
      @jbthepianist 16 днів тому +3

      Maybe it wasn’t a good place to stop :(

    • @clessalvein876
      @clessalvein876 14 днів тому +1

      We have homework for both the 5th term in that limit near the end and for working out solutions for alpha less than 1/2. It’s not time to stop.

  • @marianaldenhoevel7240
    @marianaldenhoevel7240 18 днів тому +27

    But Professor Penn! How do I know where the good place to stop is today?

  • @huyviethungnguyen7788
    @huyviethungnguyen7788 18 днів тому +25

    You can use stolz theorem once again to find the limit at 7:19 if you don't know the stirling's formula.

    • @slavinojunepri7648
      @slavinojunepri7648 18 днів тому +2

      Excellent point

    • @Happy_Abe
      @Happy_Abe 18 днів тому

      How would you?

    • @skylardeslypere9909
      @skylardeslypere9909 15 днів тому

      ​@@Happy_Abe what do you mean? Just plug in (n+1) and subtract (n) from it in numerator and denominator

    • @Happy_Abe
      @Happy_Abe 15 днів тому

      @@skylardeslypere9909I see. I guess it’s not that hard, but it looks very long so I didn’t work it out to actually see how easy it might be. Thank you

    • @skylardeslypere9909
      @skylardeslypere9909 15 днів тому +1

      @@Happy_Abe It will likely be a bit of a tediuos calculation, given that there are more terms now but it'll be quite straight forward

  • @kianbla1675
    @kianbla1675 18 днів тому +5

    Homework: switch the quotient in the logarithm and take minus sign out of it so you get -an²ln(((n+1)/n))/(2n+1) or later
    -an²ln(1+1/n)/(2n+1) then you use put one n inside the logarithm -anln((1+1/n)^n)/(2n+1) additionaly you divide everything by n so you get -aln(1+1/n)^n)/(2+1/n) in the limit case the experession inside the logarithm is the definition of e so the logarathm becomes 1 and 1/n disappears; so the rest is -a/2

  • @Happy_Abe
    @Happy_Abe 18 днів тому +18

    We can’t solve the case when the limit is negative infinity since then the application of the Stolz-Cesàro theorem wouldn’t have been allowed.

    • @Zaxx70
      @Zaxx70 18 днів тому +2

      Can't you assume that since the limit when alpha is 1/2 is finite the numerator grows like sqrt(n)? In that case when alpha is bigger than 1/2, the limit must be zero since the denominator would grow quicker.

    • @rotoboravtov4354
      @rotoboravtov4354 18 днів тому +3

      ​@@Zaxx70Yes. If we want to make it formal we can multiply and divide by sqrt(n) and split the limit into a product of two limits.

    • @huyviethungnguyen7788
      @huyviethungnguyen7788 18 днів тому

      I thought stolz theorem can be applied as long as bn is strictly monotone above some point and l=liman/bn exists, that includes l being negative or positive infinity?

    • @Happy_Abe
      @Happy_Abe 18 днів тому

      @@huyviethungnguyen7788 oh maybe, I though the limit has to actually exist to a real number

  • @aadfg0
    @aadfg0 18 днів тому +8

    Cleaner way: express the sum at 3:12 as a Riemann sum for (1-x)ln(x) and compute the integral.
    Details: n^-2 Σ_k (n+1-k)ln(k) = n^-2 Σ ln(k) + (1/n) Σ (1- k/n)ln(k/n) + (1/n) Σ (1-k/n) ln(n) = A+B+C. We have A = n^-2 ln(n!) ~ ln(n/e)/n -> 0 by Stirling, B -> int_0^1 (1-x)ln(x) dx = -3/4 by Riemann sums, and C = ln(n)/n^2 * n(n+1)/2 = ln(n)/2 * (1+1/n) ~ ln(n)/2, so the whole thing is (1/2 - a)ln(n) - 3/4, meaning a = 1/2 and ln(b) = -3/4.

  • @GiornoYoshikage
    @GiornoYoshikage 18 днів тому +3

    I accidentally came up with an expression inside the root 5 days ago (in the form `1^n * 2^(n-1) * ... * n^1`) and found the asymptotics of its logarithm yesterday. What a coincidence!

  • @NullClass
    @NullClass 18 днів тому +3

    Notice that the sum of ln(k!) from 1 to n equals sum of (n+1-k)ln(k). Then, it is easy to estimate the series of ln(x) and xln(x) using integrals (use sandwiche to formalize). With this I found -3/4 +ln(n)/2 - alpha*ln(n), which is coherent with the video.
    I prefer to avoid the use of specific approximations such as stirling. The integral idea is also much more flexible.

  • @wikipediaboyful
    @wikipediaboyful 17 днів тому +1

    I was watching this while i was running in a treadmill... That was 3 hours ago! Please!!! Please tell me when to stop! My legs hurt! Please tell me when to stop 😭 It hurts so much! Pleaaaaase!!!!

  • @petersievert6830
    @petersievert6830 17 днів тому +2

    12:50 So for any alpha > 1/2 we have ß=0 as a solution pair? Seems somewhat plausible anyway...

  • @bot24032
    @bot24032 18 днів тому +4

    some time ago the limit of (1^1×2^2×3^3×...×n^n)^(1/n²)/√n was evaluated to be e^(-1/4) on this channel. thr product of it and our limit is equal to the limit of (n!)^((n+1)/n²)/n^(1/2+α), or βe^(-1/4). using the fact that the limit of (n!)^(1/n)/n=1/e (which is fairly eay to prove even if you don't know sterling's formula; take the ln of both sides and turn the left side into the integral of ln x from 0 to 1), we get α=1/2, β=e^(-3/4)

    • @quite_unknown_1
      @quite_unknown_1 18 днів тому

      Exactly my thoughts

    • @wesleydeng71
      @wesleydeng71 18 днів тому

      I remember that too. Interestingly he did not mention it at all in the video.

  • @DhavalBothra
    @DhavalBothra 13 днів тому

    Had been a really popular limit question in our coaching.... apeared 3 times 😅 in our mock papers... tho few had memorised the answer after its two appearances 😂

  • @Calcprof
    @Calcprof 18 днів тому +1

    I like the re-statement O(numerator) = n^(1/2)

  • @JeanYvesBouguet
    @JeanYvesBouguet 18 днів тому +2

    Aren’t there any more good places to stop?

  • @maxhagenauer24
    @maxhagenauer24 18 днів тому +4

    11:20 He did that limit correct but weong reasoning, a logarithm does not grow faster than a linear.

    • @redpepper74
      @redpepper74 18 днів тому +7

      Yeah i think he just meant to say the opposite

    • @maxhagenauer24
      @maxhagenauer24 18 днів тому +1

      @redpepper74 I would hope so.

  • @sillymothz
    @sillymothz 17 днів тому

    My algorithm is just mocking my fear of mathematics now, isn’t it.

  • @williamchow4136
    @williamchow4136 14 днів тому

    May I ask how did you learn the stops creator theorem and, if you’ve not known it before making this video, how did you end up learning the theorem?

  • @AndyBaiduc-iloveu
    @AndyBaiduc-iloveu 18 днів тому +2

    Immediately looking at the thumbnail, I thought, Stotz cezaro TH !

  • @radadadadee
    @radadadadee 18 днів тому +2

    Using the Stirling formula was kinda nasty step to be honest but I understand the video would be too long if not

  • @plislegalineu3005
    @plislegalineu3005 18 днів тому +1

    As a DorFuchs enjoyer (not even from a German-speaking place!), I gotta say...
    🎶 Wurzel 2 pi n mal n durch e hoch n 🎶

    • @gerald56
      @gerald56 18 днів тому +1

      Even more funny:
      When he was rapping monotonously:
      ... Es gibt unendlich viele Primzahlen ...

  • @fdileo
    @fdileo 18 днів тому

    That's fantastic limit

  • @JimmyMatis-h9y
    @JimmyMatis-h9y 18 днів тому

    NGL, That's a groovy limit 😎
    Thx viewer ✌️

  • @goodplacetostop2973
    @goodplacetostop2973 18 днів тому +20

    Nah

  • @slavinojunepri7648
    @slavinojunepri7648 18 днів тому

    Fantastic

  • @축복이-x6u
    @축복이-x6u 16 днів тому

    asnwer=111 i dx isit