Distance of a point to a plane | MIT 18.02SC Multivariable Calculus, Fall 2010

Поділитися
Вставка
  • Опубліковано 18 гру 2024

КОМЕНТАРІ • 78

  • @evanderfavorites1
    @evanderfavorites1 9 років тому +52

    Oh, will you look at that. I didn't expect an MIT lecture would actually make more sense compared to the textbook I have. Great gob guys!

    • @radoslavtodorov1357
      @radoslavtodorov1357 7 років тому +8

      Most of the time they do make sense since most of the people there are passionate about their subjects and do their best to explain the concepts.

    • @Eswarramesh2428
      @Eswarramesh2428 3 роки тому

      What textbook did you use?

  • @leoliu7492
    @leoliu7492 4 роки тому +4

    Alternative method: The distance vector between the point P and the plane equals to a coefficient k times the normal vector. Then we can sub the components of the distance vector represented by k plus the coordinate of P into the equation of the plane and solve for k, the coefficient. The last step is to calculate the length of the vector k*normal.

  • @siphilipe
    @siphilipe 6 років тому +2

    My thank you after seven years since the publication.

  • @danieljulian4676
    @danieljulian4676 2 роки тому

    Having conveniently chosen P as the origin, the coordinates of point Q in the plane will be the normal vector direction multiplied by the determined (normal) distance.

  • @ow1ShinoXr
    @ow1ShinoXr 9 років тому +5

    If you are given the plane's equation and a point A,
    I find it easier to create a line perpendicular to the plane using the Point (A) given and the normal vector of the plane, which will be the direction vector of this new line.
    Then you just have to find the intersection (A') between the Line and the Plane, and calculate the distance between A and A'

  • @leoliu7492
    @leoliu7492 4 роки тому +1

    Also, I think it is necessary to give PQ a value in this question because PQ \cdot = 2x+y-2z=4 in this case.

  • @nancyndaruga6428
    @nancyndaruga6428 3 роки тому

    you just unlocked something great

  • @ceejay1684
    @ceejay1684 2 роки тому

    thank you, professor lewis

  • @alfatmiuzma
    @alfatmiuzma 2 роки тому +1

    Very good explanation.Thanks. May i know , why we are dividing by magnitude of N?

  • @rumplewang2814
    @rumplewang2814 5 місяців тому

    太棒了一次看懂。非常感谢您。
    这部分知识点看书看了半天也没明白再说什么。看到您说是投影瞬间懂了

  • @internationalremixes6440
    @internationalremixes6440 6 років тому +4

    im an indian student in class 12..and this belongs to my chapter 11 3D mathematics class 12 CBSE..and its pretty thrilling!

    • @rofiqel6226
      @rofiqel6226 6 років тому +3

      I'm a student in Toronto, Ontario, Canada and we are doing this in grade 12 as well

    • @aalokranjan99
      @aalokranjan99 5 років тому

      I'm Indian too and in 12th

    • @ranjeet5806
      @ranjeet5806 5 років тому

      @@rofiqel6226 is ur age 16 or 17? coz v r studying this in that particular age mentioned

    • @luniacllama8373
      @luniacllama8373 5 років тому

      So what?

    • @leoliu7492
      @leoliu7492 4 роки тому

      @@rofiqel6226So am I. London Ont.

  • @youmakemegolala
    @youmakemegolala 11 років тому +4

    extremely helpful. thank you so much!

  • @sujiths2253
    @sujiths2253 5 років тому

    Amazing explanation..Just wow..

  • @josevela9018
    @josevela9018 5 років тому

    is it the exact same like setting for zero if you are given point q

  • @syameer95
    @syameer95 10 років тому

    Absolutely brilliant!

  • @categories5066
    @categories5066 5 років тому

    Thank you Shlomo

  • @Bobajef
    @Bobajef 8 років тому +1

    what happened to your cos(theta). Isn't the equation vector N*vector PQ = |N||PQ|cos(theta)????

    • @EsKaioS
      @EsKaioS 7 років тому +1

      10 months late, but just wanted to clarify to the others that might be watching in the future: he's using vector projection. The one where you use the eqn you mentioned is a different/more complicated method of solving it.

  • @igorgodoicamargo1277
    @igorgodoicamargo1277 6 років тому

    Incredible video

  • @abhineetkumar9610
    @abhineetkumar9610 5 років тому +2

    I thought MIT wld give out of the world level question but pretty easy, JEE MAINS level or boards..... Loved the explanation.....

  • @melluvsskittles
    @melluvsskittles 10 років тому

    Hi thanks for uploading this video, I just don't understand why you use the coefficients of the x,y and z from the plane equation for the vector for the normal. .??
    Thanks so much anyway :)

    • @adityasahu96
      @adityasahu96 10 років тому +2

      Vector equation of a plane search it on youtube

    • @adityasahu96
      @adityasahu96 10 років тому +1

      Sorry youtube autocorrect

    • @abdurrahmanlabib916
      @abdurrahmanlabib916 5 років тому

      @@adityasahu96 dude delete that comment or correct it

    • @adityasahu96
      @adityasahu96 5 років тому

      @@abdurrahmanlabib916 shit sorry hahaha

  • @KenyotMaut
    @KenyotMaut 12 років тому

    I did, pondered for a while, and then figured out I'm out of luck

  • @DanielSColao
    @DanielSColao 5 років тому

    Great video!

  • @uda911
    @uda911 12 років тому +1

    that is exactly what i said before i click on this video lol. He is a BOSS

  • @PigsCanFly99
    @PigsCanFly99 12 років тому

    let T(x,y,z) be the "normal point" on the plane to the point in question. Establish any point on the plane. We now have two vectors sharing T as a common endpoint. These two vectors are orthogonal so we know their dot product equals zero. We'll have a system of linear equations for or from which we can solve for T(x,y,z). Knowing the co-ordinates for T(x,y,z) allows us to compute the distance between the off-plane point and T using "3D Pythagoris". Sound reasonable?

  • @JonasWeckschmied
    @JonasWeckschmied 10 років тому +5

    Great video, but there is an easier way. We just take the equation E:2x+y-2z-4=0, and normalize the norm vector (that's the Hesse form) by dividing the whole equation by the magnitude of the norm vector. So we get (2x+y-2z-4)/3=0. Now simply plug in the x,y,z coordinates of your point and you're done.

    • @jamesrockford2626
      @jamesrockford2626 10 років тому

      I'm curious, how would you get the x,y,z point of the intersection of "P" and and the plane?

    • @JonasWeckschmied
      @JonasWeckschmied 10 років тому

      James Rockford The point P and the plane E are not actually intersecting (in that case the distance between the two would be 0)

    • @jamesrockford2626
      @jamesrockford2626 10 років тому +1

      Jonas Weckschmied
      thanks, but hypothetically if a point was above a plane what would be the procedure to find its intersecting point with the plane?

    • @JonasWeckschmied
      @JonasWeckschmied 10 років тому +1

      James Rockford So we need a line that goes through point and intersects the plane. Of course that line should be perpendicular (right angle) to the plane, because that is the shortest connection. Now how do we find that line? It's just the normal vector of the plane. In this case it would be (2;1;-2). Or at least, that is the direction vector of the line. The line has to go through our point P. There are lots of different ways of writing an equation for lines, I hope you are familiar with this notation: X = (0;0;0)+s*(2;1-2) where 0,0,0 is point P and 2,1,-2 is our direction vector. So now the point of intersection between the line and the plane can be calculated. Just plug every coordinate of the line equation into the equation of the plane. Remember that the X essentially just means (x,y,z). So 2*(2s)+1*(1s)-2*(-2s)-4=0
      Solve for s. Then plug s into the line equation, and you get the x,y,z coordinates of the point of intersection.
      This might be a little confusing, but I hope you can follow my thoughts
      Note: s is just a random name for the variable I chose, you could ask call it t, r, gamma, or whatever you want

    • @jamesrockford2626
      @jamesrockford2626 10 років тому

      Jonas Weckschmied
      thanks appreciate it

  • @P4INKiller
    @P4INKiller 11 років тому +3

    Watch out, we've got a badass over here.

  • @vaibhavpatekar7869
    @vaibhavpatekar7869 4 роки тому

    Good job!👍👍👍👍

  • @youmakemegolala
    @youmakemegolala 11 років тому

    does it matter if it is vector QP instead of PQ?

  • @KenyotMaut
    @KenyotMaut 12 років тому

    good for you then

  • @BankAlexander
    @BankAlexander 10 років тому

    Thanks very much

  • @qaylin
    @qaylin 13 років тому

    You seriously rule.

  • @420hassam
    @420hassam 13 років тому

    thnxx...gr8 video

  • @JayRileyArgue
    @JayRileyArgue 12 років тому

    great vid

  • @stupit1679
    @stupit1679 5 років тому +4

    who else 16 learning this

  • @youmakemegolala
    @youmakemegolala 11 років тому

    oops, never mind. i just figured this out.

  • @JiaweiTang-r2i
    @JiaweiTang-r2i Рік тому

    mit >> berkeley

  • @jamesrockford2626
    @jamesrockford2626 9 років тому

    This video is kinda old.... Is this method still relevant in modern times?

    • @kolo6518
      @kolo6518 4 роки тому

      @Hitogokochi Hahahaha so true

  • @JonathanPaullin
    @JonathanPaullin 12 років тому

    I did

  • @JB12JB
    @JB12JB 12 років тому +1

    It's a tutorial he's going to go slow.

  • @schoolissoboring1
    @schoolissoboring1 11 років тому +2

    You found the joker's day job!

  • @KenyotMaut
    @KenyotMaut 12 років тому

    hahaha that's funny. what are you getting angry for

  • @ananya_upadhya
    @ananya_upadhya 5 років тому

    Ahhan, I always thought multivariable calculus was the toughest thing in the world and it turns out we in India learn it in our senior year regular classes... hmm.

    • @nugget9245
      @nugget9245 4 роки тому +1

      There is a lot of things you probably haven't learned in India. Why are you watching this and making an unhelpful comment?

    • @ananya_upadhya
      @ananya_upadhya 4 роки тому

      @@nugget9245 if other Indians see this comment, they might relate.
      Better change your username to Snowflake

    • @nugget9245
      @nugget9245 4 роки тому

      Give a helpful comment. Not a judgmental one.

    • @ananya_upadhya
      @ananya_upadhya 4 роки тому

      @@nugget9245 it's not judgmental or whatever. I was just surprised and I expressed that. You're the one being judgmental.

  • @ayushmishraiit
    @ayushmishraiit 12 років тому

    He solved it in 8 minutes and i solved it 4 seconds after seeing the question.

  • @sighmaniacrotmg6530
    @sighmaniacrotmg6530 6 років тому

    I did this in 3 seconds in my head