Beautiful visualization | Sum of first n Hex numbers = n^3 | animation

Поділитися
Вставка
  • Опубліковано 22 лис 2024

КОМЕНТАРІ • 223

  • @drapala97
    @drapala97 6 років тому +127

    UA-cam is like a gold mine. You gotta dig deep to find the treasure..

  • @yamansanghavi
    @yamansanghavi 7 років тому +256

    Your videos deserve at least a million likes.

    • @ThinkTwiceLtu
      @ThinkTwiceLtu  7 років тому +37

      Thank you:) I don't think that many people on UA-cam are interested in this kind of stuff though

    • @iftakharahmed1821
      @iftakharahmed1821 6 років тому +24

      Think twice : There are actually more than millions of people liking these kinds of stuff but may be they are not knowing about these channel
      I MYSELF CAME AFTER RECOMMEDATION FROM 3BLUE1BROWN

    • @ThinkTwiceLtu
      @ThinkTwiceLtu  6 років тому +20

      Iftakhar Ahmed yes maybe you’re right. it’s just hard to build an audience.

    • @AmitKumar-mb6iy
      @AmitKumar-mb6iy 5 років тому +3

      Amazing work sir please allow us download also

    • @Lotschi
      @Lotschi 3 роки тому +1

      So true!

  • @dragoncurveenthusiast
    @dragoncurveenthusiast 6 років тому +137

    I love how you synchronized the animation with the music!

    • @DanyIsDeadChannel313
      @DanyIsDeadChannel313 6 років тому +2

      Dragon Curve Enthusiast he didn't you did

    • @ffggddss
      @ffggddss 5 років тому +2

      It would've been perfect had he allowed the Nocturne to finish; it had only about 20 seconds left when he chopped it...
      Fred

  • @ashleylee217
    @ashleylee217 7 років тому +109

    wow

  • @saratrao1101
    @saratrao1101 2 місяці тому

    Easily one of the most satisfying and beautiful things i’ve seen in a very long time.

  • @brogcooper25
    @brogcooper25 5 років тому +2

    These videos are the most satisfying thing on youtube. The math, the music. The animation is so smooth. Even the color pallet is delightful.

    • @ThinkTwiceLtu
      @ThinkTwiceLtu  5 років тому

      Brett Cooper thank you! I’m glad you enjoyed it:>

  • @ricardoreis368
    @ricardoreis368 6 років тому +7

    It is amazing how changing the perspective allowed to reach this conclusion. You have an interesting way of thinking! And your animations are simply beautiful!

  • @Invalid571
    @Invalid571 6 років тому +51

    That is one of the most beautiful proofs I've ever seen.
    Excellent! 👏 👏 ☺
    (Music: Frederick chopin nocturnes)
    Edit: subbed

    • @luisenriquezapataarellano7591
      @luisenriquezapataarellano7591 5 років тому +1

      I think it could've been better this time. Starting from the center of each hexarrengement draw three radial axis evenly spaced. They turn into the outside edges of the shells. From there the remaining three sections form the faces of the shells.

  • @hariharanb3253
    @hariharanb3253 5 років тому +3

    This is God's work. Please continue

  • @hex-automata
    @hex-automata Рік тому +1

    This is beautiful, especially since I rely on hexagons in my cellular automata work. And the graphics bring back fond memories of playing with the "Soma Cube".

  • @發阿-p9l
    @發阿-p9l 7 років тому +22

    Y'know since it is just a visual perception that a hexagon with a few lines become a cube, but that turns out to be a proof of that. Thats more interesting than i thought it would.

    • @ThinkTwiceLtu
      @ThinkTwiceLtu  7 років тому +1

      發阿 thanks

    • @Uhhhhhhh541
      @Uhhhhhhh541 6 років тому +3

      I do like the perception trick, however it should be noted that this is an in complete proof. It doesn’t show how an n-sized lattice can be represented as half of the shell of of cube for the general case. Rather it just shows it for a couple cases

  • @akhildivi243
    @akhildivi243 3 роки тому

    And people say math isn't art, good job. I feel like I just ascended to another plane of existence.

  • @assmuncher2396
    @assmuncher2396 7 років тому +8

    Absolutely visually stunning video and I love how quiet and beautiful you made it! Really nice job, definitely need to see some more math UA-camrs focusing on the visual beauty of mathematics without getting bogged down by long spoken explanations

  • @TheTrolowaty
    @TheTrolowaty 6 років тому +3

    This is pure beauty.

  • @RockyWearsAHat
    @RockyWearsAHat 5 років тому +1

    There’s just something so beautiful and mesmerizing about complex math, that will most likely never be very useful in most fields, to be displayed visually like this. I love it

  • @SerranoAcademy
    @SerranoAcademy 3 роки тому

    This is sooooo beautiful!

  • @BluePinkWhitePinkBlue-mc8xf
    @BluePinkWhitePinkBlue-mc8xf 6 років тому

    The music makes it even better

  • @reinerwilhelms-tricarico344
    @reinerwilhelms-tricarico344 3 роки тому

    Cool. And you can see that it still goes quadratic in n as it should for an plane: n^3 - (n-1)^3 = 3 n^2 - 3 n + 1.

  • @personmr6370
    @personmr6370 3 роки тому

    Such a great video, made me picture Hex numbers in a different way

  • @joshinils
    @joshinils 7 років тому +39

    You show that the first three "cubes" can be arranged in that pattern where the subcube is missing, but will that hold true for all n? And why?

    • @ThinkTwiceLtu
      @ThinkTwiceLtu  7 років тому +34

      Each hexagon has a center cube. From the center cube of the nth hexagon, there are n-1 cubes in a row directly to the right of it. There are n-1 more in a row at 120 degrees and another at 240 degrees. The center cube forms the "back" cube, these three rows form the "splines," if you will. The remaining cubes are in three groups, forming three (n-1)x(n-1) squares, which form the sides of the shell.

    • @joshinils
      @joshinils 7 років тому +15

      Think Twice very nice! Though the animation at 1:40 is not reflecting that, which made me suspicious.

    • @ThinkTwiceLtu
      @ThinkTwiceLtu  7 років тому +13

      ya my animating skills arent that good yet

    • @adityakhanna113
      @adityakhanna113 4 роки тому +1

      @@ThinkTwiceLtu Aw come on!

  • @MichaelMarteens
    @MichaelMarteens 7 років тому +43

    Fantastic animation, and I like your song choice.

  • @vpambs1pt
    @vpambs1pt 7 років тому +47

    Amazing as always, unfortunately I had forgotten to turn on the notifications and apparently I lost a lot! Great video, amazing!
    This is how you should think, not directly to the solution but think of ways of how can you get better at math with new problems with new solutions!

  • @chaotech8962
    @chaotech8962 6 років тому +2

    I just discovered your channel, but your demonstrations are so satisfying, keep doing what you’re doing!

  • @anamarijavego6688
    @anamarijavego6688 5 років тому +1

    most beautiful thing I saw today

  • @yuyiya
    @yuyiya 3 роки тому

    Brilliant demo! Visual proofs _rock_ !

  • @eliyasne9695
    @eliyasne9695 4 роки тому

    This is some of the most beautiful math on youtube!

  • @AdityaKumar-ij5ok
    @AdityaKumar-ij5ok 5 років тому +1

    absolutely insane idea

  • @FlyingOctopus0
    @FlyingOctopus0 6 років тому +1

    there is a way to nicely rearange cubes. Look at center cube. Take this cube and cubes on the left, then take cubes on "top" of those (in 2D up-left direction) those cubes will form n*n sized back wall. It can be easily formed just move the cubes to the left to form nice vertical columns(hides upper faces) ,then moved those columns to the front (hide right faces). If you see this, I think that seeing how to make the bottom n*(n-1) sized wall and left (n-1)*(n-1) sized wall will be easy.
    You can also rearenge them in such a way: the right cubes will form L shape(in 3D), by moving the upper cubes to the right and the bottom cubes up.

  • @aaronsztrako
    @aaronsztrako Рік тому

    This is purely genius

  • @yaboifet9058
    @yaboifet9058 7 років тому +2

    just beautiful.

  • @kacoomi
    @kacoomi 5 років тому +3

    Thank you for this video. I've been interested in this sequence for a while and knee its connection to a 2d hexagonal lattice but totally missed the 3d transformation. Really appreciate it

  • @chrisray1567
    @chrisray1567 3 роки тому

    Visual proofs are the oddly satisfying of mathematics.

  • @spmanojgowda
    @spmanojgowda 6 років тому

    This is just beautiful .

  • @henrydemello4832
    @henrydemello4832 6 років тому

    It's so beautiful, the explanation with the music 10/10

  • @tannerleonard4412
    @tannerleonard4412 7 років тому +9

    this was awesome

    • @ThinkTwiceLtu
      @ThinkTwiceLtu  7 років тому

      Nebula Quiddity trully

    • @dankazmarek1259
      @dankazmarek1259 4 роки тому

      @@ThinkTwiceLtu but how on earth do you get hold of this fabulous ideas?

  • @SamarthPrabhu0512
    @SamarthPrabhu0512 6 років тому

    Please don't stop making these videos , good sir. Will spread the word of your videos! Subscribed!

    • @ThinkTwiceLtu
      @ThinkTwiceLtu  6 років тому +1

      Thanks man:) appreciate the support~

  • @jhonlawrencebulosan741
    @jhonlawrencebulosan741 5 років тому +1

    This is such beautiful math!

  • @marinen6603
    @marinen6603 3 роки тому

    wow that was so beautiful! Thank you so much!

  •  6 років тому +1

    Beautiful!

  • @robertass5040
    @robertass5040 7 років тому +21

    Nice

  • @symbol3698
    @symbol3698 6 років тому

    Beautiful, very very pretty

  • @HuslWusl
    @HuslWusl 6 років тому

    Just beautiful!

  • @TZB131
    @TZB131 5 років тому

    so beautiful

  • @shambles-v9d
    @shambles-v9d 3 роки тому

    I'm glad YT recommendations led me here

  • @Didanihaaaa
    @Didanihaaaa 5 років тому

    wonderful approach!

  • @oliot4814
    @oliot4814 7 років тому +2

    Quite interesting and you've gotten pretty good at the 3D animation.

    • @ThinkTwiceLtu
      @ThinkTwiceLtu  7 років тому +2

      Memes Read Out loud you taught me well

  • @chamberkingston7609
    @chamberkingston7609 3 роки тому

    mathematical jawbreaker

  • @andresxj1
    @andresxj1 6 років тому

    Chopin and hexagons, I love it! 😍

  • @vishwassahu
    @vishwassahu 5 років тому +1

    Love it

  • @이지원-u1t
    @이지원-u1t 6 років тому

    beautiful

  • @mistyminnie5922
    @mistyminnie5922 5 років тому

    i gasped when i realised they could all fit together before you said asjsjsjs

  • @steffen5121
    @steffen5121 6 років тому +15

    2:18 which is in reality a parabola: 3n^2-3n+1.

    • @MrTiti
      @MrTiti 5 років тому +1

      the derivation of this stuff in the video is n*6. and indeed the number increases with n*6 ( 1 ... 7 ... 19 ... 37 ... )
      however, your derivation is 6n -3
      and still your absolute figure is correct. why?

    • @pablote325
      @pablote325 5 років тому +2

      Which is in reality a telescopic sum..

    • @dankazmarek1259
      @dankazmarek1259 4 роки тому

      @@MrTiti please, clarify your query, I cannot get it

  • @drsuper8180
    @drsuper8180 4 роки тому

    A billion likes! Truly amazing

  • @osbyrne
    @osbyrne 6 років тому

    That is truely butiful, as well as the music

  • @jenkadverson1458
    @jenkadverson1458 7 років тому +1

    Thanks for the sharing. It is a spectacular visualization.

  • @raghafazkamuhammad8576
    @raghafazkamuhammad8576 5 років тому +1

    From this video, we know that a hex number is the difference between two consecutive cubes. The nth hex number can be found with this way too:
    (2n-1)n+(n-1)

  • @TheReligiousAtheists
    @TheReligiousAtheists 6 років тому +2

    I'll never look at 2-D representations of cubes the same way again

  • @Digvijay-dp5bk
    @Digvijay-dp5bk 6 років тому

    Really all your videos are intuitive and very much elegant.
    Do upload any fantastic ideas, proof or even beautiful little intuitions you wanna share,please!{ you have platform to show beauty of mathematical ideas unlike all other mathematician}:-)

  • @pyotrleflegin7255
    @pyotrleflegin7255 6 років тому

    Lovely, quite lovely. Thank you.

  • @jwm239
    @jwm239 6 років тому

    ..the expression 3x^2 + 3x + 1 exactly describes a way that a cube grows, adding 1 to its edge length each time: E.g., start with the unit cube, then add on this many extra unit cubes for each successively larger cube: 7 -> 19 -> 37 -> 61 -> 91 - > 127 etc. (these are the differences of consecutive cubes.) Geometrically, one can imagine 'pasting' 3 'slabs', each of face area x^2, plus 3 'columns' of x unit cubes, plus a single unit cube to fill the remaining void, completing the slightly larger cube.

  • @rexygama7697
    @rexygama7697 6 років тому

    Hit like just after hearing the music, nice one!

  • @nessa6135
    @nessa6135 6 років тому

    Insightful.

  • @sumitkumar125
    @sumitkumar125 6 років тому

    beautiful !!!!!! thank you so much so share this beautiful understanding 👏👏👏👏👏👏👏

  • @Bluedragon2513
    @Bluedragon2513 6 років тому

    x^2 + 2x + 1 is the previous series..
    This one is x^3 + 3x^2 + 3x + 1... or use binomial expansion with (x+1)^n... however...a beautiful animation that helped create more vivid images...

    • @Bluedragon2513
      @Bluedragon2513 6 років тому

      The hexagon function can be said to be 6x - 5...however, to add the sum, sigma should be used. That sigma can be simplified to.. -5(randomInt) + 6 × sigma(n=1 to randomInt) n

  • @davidphy
    @davidphy 2 роки тому

    Bellísimo.

  • @clem494949
    @clem494949 5 років тому +1

    Transformation between the flat cubes and the cube shell shouldn't be taken at random, we can easily generalize this step and the visualisation should show it.

  • @harikrishna2k
    @harikrishna2k 6 років тому +1

    I love to read all the positive comments here !!

  • @maxmi-renders-channel
    @maxmi-renders-channel 6 років тому

    im subbing
    after _just one more_ video

  • @amj.composer
    @amj.composer 6 років тому

    perfecttt, so satisfying
    ahh and chopin....my favorite composer

  • @hebitokubei
    @hebitokubei Рік тому

    It's a kind of Stendhal Syndrome I sort of cry watching it. I Did it twice!

  • @gaia35
    @gaia35 3 роки тому

    thank you for the animations. since it is hex numbers it should have gone up to 6

  • @REMdonor
    @REMdonor 6 років тому

    Really interesting, but it also helped me fall asleep

  • @ZLJJcloud
    @ZLJJcloud 6 років тому

    I know this gets said alot on youtube, but how or why would someone dislike this?? surely must be a missclick. amazing video as always

  • @freakpsyche
    @freakpsyche 3 роки тому

    Mükemmel!

  • @robnicolaides3070
    @robnicolaides3070 7 років тому +1

    So wonderful :) A really nice creative way of seeing this, thanks!

  • @osirisapex7483
    @osirisapex7483 6 років тому

    Nocturne, nice

  • @aidanmccullough2668
    @aidanmccullough2668 6 років тому

    Very nice.

  • @davidobenitez3866
    @davidobenitez3866 6 років тому

    Amazing

  • @leoworker1752
    @leoworker1752 4 роки тому

    Awesome!

  • @s51nongdan8
    @s51nongdan8 5 років тому +1

    magic

  • @TylerMatthewHarris
    @TylerMatthewHarris 7 років тому

    Dude! So cool

  • @virginiagarridogenestaseco9706
    @virginiagarridogenestaseco9706 6 років тому

    MosT bEauTifuL tHINGs evEr

  • @Knewman7777
    @Knewman7777 Рік тому

    Another way to get the next number is to take the previous answer plus the interation number times 6.
    So the 3rd iteration is the second iteration (7) plus (2x6)= 19
    Then the 4th iteration is the 3rd interation (19) plus 3x6 = 37.
    I'm not that mathy, so idk how to get any random n value without having to already know the previous answer though.

  • @thegrandestbazaar4800
    @thegrandestbazaar4800 3 роки тому

    Very good

  • @ManojKumararch
    @ManojKumararch 6 років тому

    😍😍😍 I wish you were my Maths teacher

  • @StainlessHelena
    @StainlessHelena 3 роки тому +1

    I was thinking of the center piece plus 6 triangle numbers of degree n-1:
    6 × (n-1) × n/2 + 1
    This is the same formula in disguise:
    = 3 × (n-1) × n + 1
    = 3 × (n² - n) + 1
    = 3n² - 3n + 1
    = _(n³ - n³)_ + 3n² - 3n + 1
    = n³ - ( n³ - 3n² + 3n - 1 )
    = n³ - (n-1)³

  • @sinithparanga2481
    @sinithparanga2481 6 років тому

    Best Music ever!!!

  • @twinklestar3556
    @twinklestar3556 6 років тому

    Hey this is amazing and so are you! Wow!

  • @RaiyanAlphaRanger
    @RaiyanAlphaRanger 6 років тому

    Hexagon = Cube
    BEST MATH HACK EVER!!!

  • @peculiarjack617
    @peculiarjack617 3 роки тому

    'Hexagons are the bestagons'
    -Grey

  • @فارسالزعبي-ف3د
    @فارسالزعبي-ف3د 5 років тому

    Great

  • @DynestiGTI
    @DynestiGTI 6 років тому +1

    If I had received this questions I would have just done the boring method and just try counting the first few values and finding a pattern, without figuring out why. Those who ask the question *why* in maths are the ones that go on to accomplish great things.

  • @raghafazkamuhammad8576
    @raghafazkamuhammad8576 6 років тому

    Odd numbers can make a perfect square and hex numbers can make a perfect cube

  • @alexshao9916
    @alexshao9916 4 роки тому

    0:50
    After I noticed the typo my OCD immediately started firing up. The rest of the video is absolutely amazing tho

  • @MorrisonProductions
    @MorrisonProductions 7 років тому +24

    This is genuinely really interesting. Is it the same thing if you use other shapes instead of hexagons?

    • @ThinkTwiceLtu
      @ThinkTwiceLtu  7 років тому +8

      Morrison Productions yes it's pretty much the same as long as you dont change the number of objects in a hexagonal lattice

    • @Schwallex
      @Schwallex 6 років тому +2

      +Morrison Productions: What a bizarre question to ask.
      If you use other shapes, the numbers all change completely.
      A hexagon is surrounded by 6 other hexagons. A triangle will be surrounded by only 3 similar triangles. Not 6
      A square will be surrounded by 4 squares (a cross) or 8 squares (a bigger square). But not 6.
      1+3 is not the same as 1+4 is not the same as 1+6. Like, what are you even on about, mate. Have you even stopped for a second to think. To just think of a triangle and ask yourself if the first numbers would still be 1, 7, 19, 37, or whether they'd be something else entirely.
      This proof is specifically for the sum of the first N Hex numbers. Not the sum of the first N whatever numbers.
      Talk about missing the point of the whole video. Talk about not reading the title. Talk about not thinking at all.
      So much work went into this animation only for it to completely fly over some people's heads at the most basic level. That saddens me to no end.

    • @DEUXSantos
      @DEUXSantos 6 років тому +8

      You should learn from this channel's host about politeness, not everyone is as wise as you.

    • @timh.6872
      @timh.6872 4 роки тому +1

      I'm also curious about this. I _think_ this has to do with the Schlaffli Symbol for the hexagonal tiling {6,3}, but I'm not perfectly sure, since {4,4} gives n^3/3 - n^2/2 + n/6. I also forget the triangle sum off the top of my head. The hyperbolic tilings allow for most of the other combinations (sans the spherical tilings otherwise known as the platonic solids and some degenerate 2-gon nonsense on spheres as well), so {6,4} should also have a "ring count" number, but with 4 hexagons per vertex, as would {4,6} with 6 squares to the vertex. Finding patterns here would be neat, since the construction of n-sided meta-gons _should_ work even in hyperbolic space.

    • @dankazmarek1259
      @dankazmarek1259 4 роки тому +1

      @@timh.6872 Man! I think something pretty serious is going on in your head... I wish if you could lay it flat on layman's language or at least have suggested a clue ( maybe a channel) to do some study and understand what is hiding behind your notational talking. I would be grateful if you do it now.

  • @vijaysubramanian2037
    @vijaysubramanian2037 6 років тому

    Great Animation! Similar to 3 blue 1 brown, your video gave more importance to the visualization than the formula. If you haven't already seen 3b1b videos, i strongly suggest you check them out.

  • @peterpiffpaff9869
    @peterpiffpaff9869 6 років тому

    13 out of 10 possible points!!!

  • @luissalvadorangulolira9759
    @luissalvadorangulolira9759 6 років тому

    Mind blown!!

  • @animestation7225
    @animestation7225 2 роки тому

    This is how the mind of a 2D person differs from a 3D person .

  • @TheHideout0
    @TheHideout0 6 років тому

    mathematics are real world magic