Math Olympiad | A Nice Factorial Problem | VIJAY Maths

Поділитися
Вставка
  • Опубліковано 31 гру 2024

КОМЕНТАРІ • 13

  • @ganeshdas3174
    @ganeshdas3174 2 дні тому +3

    On factorisation of 840 it gives four continued factors. They are 4 × 5 × 6 × 7= 840
    (x+1) (x + 2) (x+3) (x +4) =840
    (x+1) (x+2) (x+3) (x+4) = (3+1) (3+2) (3+3) (3+4) implies
    x = 3

    • @geralynpinto5971
      @geralynpinto5971 10 годин тому

      Brilliant. There's so much I can learn from you.

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq 3 дні тому +1

    We may take a brief logical approach please.
    The LHS is a number (840) expressed in ratio of two
    Factorials.
    The factorial as the Numerator is greater than the factorial as the Denominator
    Now 6!= 720
    As the N/D is greater than 720
    we may say that numerator will be a factorial greater than 6!
    So just take the Numerator
    =7! = (x +4)!=5040
    Here x =3
    So Denominator will be x! =3!
    Now 7!/3! =5040/6=840
    Hence x =3 is the required answer.

  • @DecodeLearningUPSC
    @DecodeLearningUPSC День тому +2

    umm i got answer in 2 mins by factorising rhs. am i doing something wrong?

    • @skkarimullah9988
      @skkarimullah9988 14 годин тому

      Nah that's just a faster solution well done

  • @andrepiotrowski5668
    @andrepiotrowski5668 2 дні тому

    x^4 < 840 => x < sqrt(sqrt(840)) < sqrt(29) < 6 and 840 is divisible by 5. So only x=1, x=2, x=3 or x=4 need to be checked.
    (x=5: x is less than 6 as requested, but 6 * 7 * 8 * 9 is not divisible by 5)
    x=4: 5 * 6 * 7 * 8 = 1680 - no
    x=3: 4 * 5 * 6 7 = 840 - yes (here we can stop, because for lower x the result will be less than 840)
    x=2: 3 * 4 * 5 * 6 = 360 - no
    x=1: 2 * 3 * 4 * 5 = 120 - no
    (x=0: 1 * 2 * 3 * 4 = 24 - no - not divisible by 5)

  • @raghvendrasingh1289
    @raghvendrasingh1289 3 дні тому +1

    👍
    (x+4)(x+3)(x+2)(x+1) = 840
    let x = y - 5/2
    (y +3/2)(y+1/2)(y-1/2)(y - 3/2) = 840
    (y^2 - 9/4)(y^2 - 1/4) = 840
    y^4 - 5y^2/2+9/16 = 840
    (y^2 - 5/4)^2 = 841
    y^2 = 29+5/4
    y^2 = 121/4
    y = 11/2
    x = y - 5/2 = 3

    • @vijaymaths5483
      @vijaymaths5483  2 дні тому

      Nice approach, I like how you used the substitution to simplify the problem!

  • @adribber
    @adribber 3 дні тому +1

    there is no condition for x, so i think about the real solution is 3 & - 8.
    (x + 4)!/x! = 840
    x!(x + 1)(x + 2)(x + 3)(x + 4)/x! = 840
    (x + 1)(x + 2)(x + 3)(x + 4) = 840
    (x + 1)(x + 2)(x + 3)(x + 4) = 4*5*6*7
    &
    (x + 1)(x + 2)(x + 3)(x + 4) = (- 7)*(- 6)*(- 5)*(- 4)
    x + 1 = 4 & x + 1 = - 7
    ∴ x = 3 , x = - 8
    ∴ eq. must have a factor as '3' & '- 8'
    (x + 1)(x + 4)(x + 2)(x + 3) = 840
    (x² + 5x + 4)(x² + 5x + 6) = 840
    (x² + 5x + 4){(x² + 5x + 4) + 2} = 840
    (x² + 5x + 4)² + 2(x² + 5x + 4) = 840
    x⁴ + 25x² + 16 + 2(5x³ + 20x + 4x²) + 2(x² + 5x + 4) = 840
    x⁴ + 10x³ + 35x² + 50x - 816 = 0
    x⁴ - 81 + 10x³ - 270 + 35x² - 315 + 50x - 150 = 0
    (x⁴ - 3⁴) + 10(x³ - 3³) + 35(x² - 3²) + 50(x - 3) = 0
    (x² + 3²)(x + 3)(x - 3) + 10(x - 3)(x² + 3x + 3²) + 35(x + 3)(x - 3) + 50(x - 3) = 0
    (x - 3){(x² + 9)(x + 3) + 10(x² + 3x + 9) + 35(x + 3) + 50} = 0
    (x² + 9)(x + 3) + 10(x² + 3x + 9) + 35(x + 3) + 50 = 0
    x³ + 3x² + 9x + 27 + 10x² + 30x + 90 + 35x + 105 + 50 = 0
    x³ + 13x² + 74x + 272 = 0
    (x³ + 512) + (13x² + 208x + 832) - (134x + 1072) = 0
    (x³ + 8³) + 13(x² + 16x + 8²) - 134(x + 8) = 0
    (x + 8)(x² - 8x + 8²) + 13(x + 8)² - 134(x + 8) = 0
    (x + 8){(x² - 8x + 8²) + 13(x + 8) - 134} = 0
    (x + 8)(x² - 8x + 64 + 13x + 104 - 134) = 0
    (x + 8)(x² + 5x + 34) = 0
    ∴ (x - 3)(x + 8)(x² + 5x + 34) = 0
    x² + 5x + 34 = 0
    D = 5² - 4*1* 34 < 0 rejected
    ∴ (x - 3)(x + 8) = 0
    ∴ x = 3 , x = - 8

    • @PrithwirajSen-nj6qq
      @PrithwirajSen-nj6qq 3 дні тому +1

      If we take x = -8
      Then the numerator will be factorial of - ve 4
      And Denominator will be
      factorial of - ve 8
      But factorial always be of a positive number and zero.
      Hence x = -8 may not be taken as an answer.
      Please see.