Math Olympiad l A Nice Algebra Problem l 95% Failed to solve!

Поділитися
Вставка
  • Опубліковано 3 січ 2025

КОМЕНТАРІ • 14

  • @nasrullahhusnan2289
    @nasrullahhusnan2289 6 днів тому +1

    Outline to solve:
    Multiply by the conjugate of any term in LHS. It will yield a quadratic equation in term of the conjugate. Take the logarithm of the root.
    Let u=[4+sqrt(15)]^x
    v=[4-sqrt(15)]^x
    Then u+v=62
    Multiply by v, say:
    1+v²=62v --> v²-62v+1=0
    v=½[62±sqrt(62²-4)]
    =½[62±sqrt(3840)]
    =½[62±16sqrt(15)]
    =31±8sqrt(15)
    x=[log(v)]/log(4-sqrt(15)
    =4±[1/log{4-sqrt(15)}]

  • @ganeshdas3174
    @ganeshdas3174 7 днів тому +1

    Use of conjugate applications will be a clue. 4 - √15 = 1/4 +√15 . On substitution it gives you m^2 - 62 m+1=0 where m= (4+√15) ^x = m, solving the quadratic m = (31 + - 8√15) . recall m = (4 + √15) ^x take log and get the value of x

  • @mathpro926
    @mathpro926 6 днів тому +1

    Nice solution and good explanation

  • @kevinmadden1645
    @kevinmadden1645 7 днів тому +1

    X has to be an even integer because if it were odd there would be a cross term involving the square root of 15..Testing 2 yields the result .

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 7 днів тому +1

    (2^2+2^3)+(2^2+2^3) (1^1+1^1)+(2^1+1^3) (2+3)(x ➖ 3x+2).

  • @marcgriselhubert3915
    @marcgriselhubert3915 6 днів тому

    Be f: x ---> (4 + sqrt(15))^x + (4 - sqrt(15))^x.
    f(x) = (4 + sqrt(15))^x + (4 + sqrt(15))^(-x) = exp(x.ln(4 + sqrt(15))) + exp(-x.ln(4 + sqrt(15))) = 2.cosh(x.ln(4 + sqrt(15)))
    f verifies f(x) = f(-x) for any real x, and if we limit f at R+ then it is a bijection from R+ to [2, + infinity[
    As 65 is in [2, +infinity], the equation f(x) = 65 has an unique solution x0 on R+ and an unique solution -x0 on R-
    As x0 = 2 is evident solution we then have that the given equation has two solutions and only two: 2 and -2.

  • @ManojkantSamal
    @ManojkantSamal 4 дні тому

    X=2......May be
    ^=read as to the power
    *=read as square root
    Let R=4+*15
    A=4-*15
    RA=(4+*15)(4-*16)
    =4^2-(*15)^2
    =16-15=1
    So,
    RA=1
    A=1/R....... Eqn1
    Let R^x=t
    As per question
    t+(1/t)=62
    So,
    (t^2+1)/t =62
    t^2+1=62t
    t^2-62t+1=0
    Here a=1,b=(-62),c=1
    D=b^2-4ac
    =(-62)^2 -{4×1×1)
    =3844-4=3840
    *D=*(3840)
    =(*256)×(*15)
    =16.*15
    So,
    t={-(-62)±16.*15}/2
    =(62+16.*15)/2
    =2(31+8.*15)/2
    =31+8.*15
    =4^2+(*15)^2+(2×4×*15)
    =(4+*15)^2
    =R^2
    So,
    t=R^2
    R^x=R^2...(t=R^x)
    So,
    X=2
    We can also apply logarithmic method......
    R^x=R^2
    Take log
    logR^x=logR^2
    X. logR=2.logR
    X=2.logR/logR
    X=2

  • @에스피-z2g
    @에스피-z2g 6 днів тому

    Solution by insight
    (a+b)^2+(a-b)^2=
    2(a^2+b^2)=
    2(16+15)=62
    x=2
    And. a+b=1/(a-b)
    x=-2 is also an answer

  • @amitsrivastava2725
    @amitsrivastava2725 6 днів тому +1

    Very very very slow explanation boring

    • @vijaymaths5483
      @vijaymaths5483  6 днів тому

      लगता है तुम्हे म्यथ्स सब्जेक्ट ही बोर है।

    • @ManojkantSamal
      @ManojkantSamal 4 дні тому

      The walk of mathematics is adventurous. So, Sir, You shouldn't present opinion like this.