- 1 454
- 2 805 020
VIJAY Maths
India
Приєднався 17 тра 2022
Hello friends,
Welcome
to
🙏VIJAY Maths 🙏
This channel is created only for Maths. Basically, I will teach AMAZING TRICKS in Math for quick calculation.I upload course of Text Book of class 7th, 8th , 9th and 10th.
Support me to spread this channel...
I request you to please SUBSCRIBE and Press the Bell icon for latest updates..
For any Queries:
Email : sumeetsangame111@gmail.com
Welcome
to
🙏VIJAY Maths 🙏
This channel is created only for Maths. Basically, I will teach AMAZING TRICKS in Math for quick calculation.I upload course of Text Book of class 7th, 8th , 9th and 10th.
Support me to spread this channel...
I request you to please SUBSCRIBE and Press the Bell icon for latest updates..
For any Queries:
Email : sumeetsangame111@gmail.com
Math Olympiad l A Nice Algebra Problem l VIJAY Maths
#exponentialproblems #matholympiad #maths #algebra
Переглядів: 268
Відео
Math Olympiad l A Wonderful Exponential Equation l VIJAY Maths
Переглядів 1,2 тис.13 годин тому
#exponentialproblems #matholympiad ,#exponentialproblemsolving,#exponentialproblemsandsolutions,#exponentialproblemsexamples,#exponentialproblemsolvingquestions,#learnhowtosolveexponentialproblem,#aniceolympiadexponentialproblem,#exponentialfunctionproblemsolving,#exponentialgrowthanddecaywordproblems,#exponentialproblemexample,#problemsolvinginvolvingexponentialfunctions,#exponentialfunctionpr...
Math Challenge l A Nice Exponential Problem l Find the value of X
Переглядів 4332 години тому
#exponentialproblems #matholympiad ,#exponentialproblemsolving,#exponentialproblemsandsolutions,#exponentialproblemsexamples,#exponentialproblemsolvingquestions,#learnhowtosolveexponentialproblem,#aniceolympiadexponentialproblem,#exponentialfunctionproblemsolving,#exponentialgrowthanddecaywordproblems,#exponentialproblemexample,#problemsolvinginvolvingexponentialfunctions,#exponentialfunctionpr...
Math Olympiad l A Nice Radical Exponential Equation l VIJAY Maths
Переглядів 7762 години тому
#exponentialproblems #matholympiad #radical ,#exponentialproblemsolving,#exponentialproblemsandsolutions,#exponentialproblemsexamples,#exponentialproblemsolvingquestions,#learnhowtosolveexponentialproblem,#aniceolympiadexponentialproblem,#exponentialfunctionproblemsolving,#exponentialgrowthanddecaywordproblems,#exponentialproblemexample,#problemsolvinginvolvingexponentialfunctions,#exponentialf...
Math Olympiad l A Nice Algebra Problem l VIJAY Maths
Переглядів 5424 години тому
#exponentialproblems #matholympiad #maths #algebra
Math Olympiad | A Nice Factorial Problem | VIJAY Maths
Переглядів 2,4 тис.7 годин тому
Also Watch our Most Viral Interesting Math Olympiad Problem: ua-cam.com/video/uxPY1XFYC0k/v-deo.html Subscribe to our channel and press the bell icon 🔔 for daily Brainstorming Math videos → ua-cam.com/channels/MJDfDjItWRhlUxEwDQeM1Q.html #factorial #factorials #maths #matholympiad #rational
Math Olympiad l Can you solve given Complex Problem l VIJAY Maths
Переглядів 1,2 тис.7 годин тому
#exponentialproblems #matholympiad ,#exponentialproblemsolving,#exponentialproblemsandsolutions,#exponentialproblemsexamples,#exponentialproblemsolvingquestions,#learnhowtosolveexponentialproblem,#aniceolympiadexponentialproblem,#exponentialfunctionproblemsolving,#exponentialgrowthanddecaywordproblems,#exponentialproblemexample,#problemsolvinginvolvingexponentialfunctions,#exponentialfunctionpr...
Hong Kong l A Beautiful Exponential Problem l Math Olympiad
Переглядів 1,3 тис.9 годин тому
#exponentialproblems #matholympiad ,#exponentialproblemsolving,#exponentialproblemsandsolutions,#exponentialproblemsexamples,#exponentialproblemsolvingquestions,#learnhowtosolveexponentialproblem,#aniceolympiadexponentialproblem,#exponentialfunctionproblemsolving,#exponentialgrowthanddecaywordproblems,#exponentialproblemexample,#problemsolvinginvolvingexponentialfunctions,#exponentialfunctionpr...
College Entrance Exam l Find the value of a^2000 + a^-2000 l VIJAY Maths
Переглядів 5139 годин тому
#exponentialproblems #matholympiad ,#exponentialproblemsolving,#exponentialproblemsandsolutions,#exponentialproblemsexamples,#exponentialproblemsolvingquestions,#learnhowtosolveexponentialproblem,#aniceolympiadexponentialproblem,#exponentialfunctionproblemsolving,#exponentialgrowthanddecaywordproblems,#exponentialproblemexample,#problemsolvinginvolvingexponentialfunctions,#exponentialfunctionpr...
Math Olympiad l A Nice Algebra Problem l 95% Failed to solve!
Переглядів 2,5 тис.12 годин тому
#exponentialproblems #matholympiad #maths ,#exponentialproblemsolving,#exponentialproblemsandsolutions,#exponentialproblemsexamples,#exponentialproblemsolvingquestions,#learnhowtosolveexponentialproblem,#aniceolympiadexponentialproblem,#exponentialfunctionproblemsolving,#exponentialgrowthanddecaywordproblems,#exponentialproblemexample,#problemsolvinginvolvingexponentialfunctions,#exponentialfun...
Math Olympiad l A Nice Algebra Problem l VIJAY Maths
Переглядів 3,3 тис.14 годин тому
Also Watch our Most Viral Interesting Math Olympiad Problem: ua-cam.com/video/uxPY1XFYC0k/v-deo.html Subscribe to our channel and press the bell icon 🔔 for daily Brainstorming Math videos → ua-cam.com/channels/MJDfDjItWRhlUxEwDQeM1Q.html #matholympiad #maths #radical #algebra
Math Olympiad | Find the sum of the series without using a Calculator | VIJAY Maths
Переглядів 2,5 тис.14 годин тому
Also Watch our Most Viral Interesting Math Olympiad Problem: ua-cam.com/video/uxPY1XFYC0k/v-deo.html Subscribe to our channel and press the bell icon 🔔 for daily Brainstorming Math videos → ua-cam.com/channels/MJDfDjItWRhlUxEwDQeM1Q.html #exponentialproblems #matholympiad #maths
Math Olympiad l Simplify the Expression without using a Calculator | VIJAY Maths
Переглядів 1,4 тис.16 годин тому
Also Watch our Most Viral Interesting Math Olympiad Problem: ua-cam.com/video/uxPY1XFYC0k/v-deo.html Subscribe to our channel and press the bell icon 🔔 for daily Brainstorming Math videos → ua-cam.com/channels/MJDfDjItWRhlUxEwDQeM1Q.html #matholympiad #maths #exponential #radical
Math Olympiad l A Nice Algebra Problem l 90% Failed to solve!
Переглядів 2 тис.19 годин тому
Also Watch our Most Viral Interesting Math Olympiad Problem: ua-cam.com/video/uxPY1XFYC0k/v-deo.html Subscribe to our channel and press the bell icon 🔔 for daily Brainstorming Math videos → ua-cam.com/channels/MJDfDjItWRhlUxEwDQeM1Q.html #matholympiad #maths #radical #algebra #exponential
Math Olympiad l A Beautiful Exponential Problem l VIJAY Maths
Переглядів 2,6 тис.21 годину тому
#exponentialproblems #matholympiad ,#exponentialproblemsolving,#exponentialproblemsandsolutions,#exponentialproblemsexamples,#exponentialproblemsolvingquestions,#learnhowtosolveexponentialproblem,#aniceolympiadexponentialproblem,#exponentialfunctionproblemsolving,#exponentialgrowthanddecaywordproblems,#exponentialproblemexample,#problemsolvinginvolvingexponentialfunctions,#exponentialfunctionpr...
Math Olympiad l A Nice Exponential Problem l VIJAY Maths
Переглядів 2,2 тис.21 годину тому
Math Olympiad l A Nice Exponential Problem l VIJAY Maths
Math Olympiad l A Nice Algebra Problem l 90% Failed to solve!
Переглядів 4,4 тис.День тому
Math Olympiad l A Nice Algebra Problem l 90% Failed to solve!
Math Olympiad | A Nice Radical Problem | VIJAY Maths
Переглядів 854День тому
Math Olympiad | A Nice Radical Problem | VIJAY Maths
Math Olympiad | Find the Area of the right angle Triangle l VIJAY Maths
Переглядів 1,3 тис.День тому
Math Olympiad | Find the Area of the right angle Triangle l VIJAY Maths
Stanford University Admission Interview Tricks l Find a = ?
Переглядів 587День тому
Stanford University Admission Interview Tricks l Find a = ?
Math Olympiad | A Nice Rational Equation | 90% Failed to solve!
Переглядів 1,2 тис.День тому
Math Olympiad | A Nice Rational Equation | 90% Failed to solve!
Simplify this Cambridge Interview Question without using a Calculator
Переглядів 1,2 тис.День тому
Simplify this Cambridge Interview Question without using a Calculator
Math Olympiad | A Nice Exponential Problem | 90% Failed to solve!
Переглядів 1,2 тис.14 днів тому
Math Olympiad | A Nice Exponential Problem | 90% Failed to solve!
High School Mathematics Tournament l Find the value of X
Переглядів 82914 днів тому
High School Mathematics Tournament l Find the value of X
Find the Mean , Variance & Standard Deviation of frequency grouped data table
Переглядів 18114 днів тому
Find the Mean , Variance & Standard Deviation of frequency grouped data table
Germany Math Olympiad l Nice Exponential Problem l No Calculators📵
Переглядів 61814 днів тому
Germany Math Olympiad l Nice Exponential Problem l No Calculators📵
China l A Nice Algebra Problem l Math Olympiad
Переглядів 85214 днів тому
China l A Nice Algebra Problem l Math Olympiad
Thailand Math Olympiad l A Nice Algebra Challenge
Переглядів 1,5 тис.14 днів тому
Thailand Math Olympiad l A Nice Algebra Challenge
Japan | A Nice Radical Problem | Math Olympiad
Переглядів 63814 днів тому
Japan | A Nice Radical Problem | Math Olympiad
Germany l A Nice Algebra Problem l Math Olympiad
Переглядів 73014 днів тому
Germany l A Nice Algebra Problem l Math Olympiad
(x⁴⁴ + x-⁴⁴)/44 = 4 (x⁸⁸ + x-⁸⁸)/88 = ? x⁴⁴ + 1/x⁴⁴ = 4*44 (x¹¹)⁴ + (1/x¹¹)⁴ = 4²*11 Let, (x⁸⁸ + x-⁸⁸)/88 = k k = {(x¹¹)⁸ + (1/x¹¹)⁸}/88 = [{(x¹¹)⁴ + (1/x¹¹)⁴}² - 2]/88 Recall, (x¹¹)⁴ + (1/x¹¹)⁴ = 4²*11 k = [(4²*11)² - 2]/88 = (4⁴*11² - 2)/88 = 30,974/88 = 2*17*911/8*11 = 17*911/4*11
x^4-=-1 a^777= a^194×4.a=(-1)^194×a= a ?= a,+1/a= √2
Yes, you are right ✅️
SENSATIONAL!
First we simplify by 2022^2, it gives: 2022(-x) + 2022^x = 2 or 2.cosh(x.ln(2022)) = 2, or cosh(x.ln(2022) = 1. That gives an unique solution: x.ln(2022) = 0 or x = 0. (As cosh(X) = 1 is equivalent to X = 0)
Excellent example 👏
[(x^44+1/x^44)/44]^2=(x^88+1/x^88+2)/(22*2*44)=16 Thus, (x^88+1/x^88)/88=(16*22*44-1)/44=15487/44
?={ (176)^2-2}/88= 15487/44
2ⁿ - 3ⁿ = √(6ⁿ - 9ⁿ) 2ⁿ - 3ⁿ = √{3ⁿ(2ⁿ - 3ⁿ)} (2ⁿ - 3ⁿ)² = [√{3ⁿ(2ⁿ - 3ⁿ)}]² (2ⁿ - 3ⁿ)² = 3ⁿ(2ⁿ - 3ⁿ) (2ⁿ - 3ⁿ)² - 3ⁿ(2ⁿ - 3ⁿ) = 0 (2ⁿ - 3ⁿ){(2ⁿ - 3ⁿ) - 3ⁿ} = 0 (2ⁿ - 3ⁿ)(2ⁿ - 2*3ⁿ) = 0 2ⁿ - 3ⁿ = 0 , 2ⁿ - 2*3ⁿ = 0 Case 1 : 2ⁿ - 3ⁿ = 0 2ⁿ = 3ⁿ log2ⁿ = log3ⁿ log2ⁿ - log3ⁿ = 0 nlog2 - nlog3 = 0 n(log2 - log3) = 0 ∴ n = 0 Case 2 : 2ⁿ - 2*3ⁿ = 0 2ⁿ = 2*3ⁿ log2ⁿ = log(2*3ⁿ) nlog2 = log2 + nlog3 nlog2 - nlog3 = log2 n(log2 - log3) = log2 ∴ n = log2/(log2 - log3)
2022(2)^2 ➖ (x)^2 +(2022^{2+2 ➖ }+{x+x ➖}= 2022^{4 ➖ x^2}+2022^{4+x^2}=2022^{x^0+x^0 ➖ x^0 +x^0 ➖}+2022^{4+x^2}=2022^{x^1+x^1}+2022^4x^2=2022^x^2+8088x^2={4044+8088x^2}=12.132x^2 1^1.1^1^1^x^2 1x^2 (x ➖ 2x+1). (2022)^2=40484 2^2^02^2^2^3^2^2 1^10.1^1^1^1^1^1^1 1^2^5 1^2^1 2^1(x ➖ 2x+1).
{4 ➖ 6}=2 (x ➖ 2x+2). {36 ➖ 81} =45 3^15 23^3^5 1^3^1 3^1(x ➖ 3x+1).
الحل بطريقة القسمة المتكررة اسهل بكثير
Go for 2022^2(x +1/x) = 2.2022^2 ( x +1/x) = 2 (√x) ^2 +(1/√x) ^2 - 2 x. 1/x = 0 (√x - 1/√x) ^2 = 0 x = 1
2022²-ⁿ + 2022²+ⁿ = 2(2022)² 2022²(2022-ⁿ + 2022+ⁿ) = 2(2022)² (2022-ⁿ + 2022+ⁿ) = 2 2022²ⁿ - 2*2022ⁿ + 1 = 0 (2022ⁿ - 1)² = 0 2022ⁿ = 1 ∴ n = 0
On squaring B/S 4^x - 2 6^x + 9^x = 6^x - 9^x 4^x - 3.6^x + 2 .9^x = 0 devide it by 4^x B/S 1 - 3(3/2) ^x + 2.(3/2) ^2 x = 0 Put (3/2) ^x = p 2 p^2 - 3 p + 1= 0 Solve the quadratic eqn. p =( 3+ -√9 - 8 ) /4 p = 1& 1/2 Recall p= (3/2) ^x = 1 , x = 0 (3/2) ^x = 1/2, take log x = log( 1/2)/(log 3/2) & 0
umm i got answer in 2 mins by factorising rhs. am i doing something wrong?
Nah that's just a faster solution well done
x^4 < 840 => x < sqrt(sqrt(840)) < sqrt(29) < 6 and 840 is divisible by 5. So only x=1, x=2, x=3 or x=4 need to be checked. (x=5: x is less than 6 as requested, but 6 * 7 * 8 * 9 is not divisible by 5) x=4: 5 * 6 * 7 * 8 = 1680 - no x=3: 4 * 5 * 6 7 = 840 - yes (here we can stop, because for lower x the result will be less than 840) x=2: 3 * 4 * 5 * 6 = 360 - no x=1: 2 * 3 * 4 * 5 = 120 - no (x=0: 1 * 2 * 3 * 4 = 24 - no - not divisible by 5)
840=2*2*2*3*5*7 = 4*5*6*7 Now (x +4)!/x! = 4*5*6*7= [1*2*3*(4*5*6*7)]/(1*2*3) =7!/3! It is clearly seen that x =3
a⁴ + (1/a⁴) = 47 (a⁸ + 1)/a⁴ = 47 a⁸ + 1 = 47a⁴ a⁸ - 47a⁴ + 1 = 0 Δ = (- 47)² - 4 = 2205 = 5 * 441 = 5 * 21² a⁴ = (47 ± 21√5)/2 → given: a > 0 → a⁴ > 0 a⁴ = (47 + 21√5)/2 a⁴ = (94 + 42√5)/4 a⁴ = (376 + 168√5)/16 Let's try tio find a number n = (x + y√5) such as its square is a⁴ (x + y√5)² = x² + 2xy√5 + 5y² (x + y√5)² = x² + 5y² + 2xy√5 → (376 + 168√5) 2xy√5 = 168√5 → 2xy = 168 → xy = 84 → y = 84/x x² + 5y² = 376 x² + 5.(84/x)² = 376 (x⁴ + 35280)/x² = 376 x⁴ + 35280 = 376x² x⁴ - 376x² + 35280 = 0 Δ = (- 376)² - (4 * 35280) = 256 = 16² x² = (376 ± 16)/2 x² = 188 ± 8 First case: x² = 180 → x = ± √180 = ± 6√5 Second case: x² = 196 → x = ± 14 We keep only the more convenient solution: x = 14 Recall: y = 84/x → y = 84/14 = 6 Recall: n = (x + y√5) = 14 + 6√5 Restart a⁴ = (376 + 168√5)/16 a² = (14 + 6√5)/4 Let's try tio find a number m = (x + y√5) such as its square is a² (x + y√5)² = x² + 2xy√5 + 5y² (x + y√5)² = x² + 5y² + 2xy√5 → (14 + 6√5) 2xy√5 = 6√5 → 2xy = 6 → xy = 3 → y = 3/x x² + 5y² = 14 x² + 5.(3/x)² = 14 (x⁴ + 45)/x² = 14 x⁴ + 45 = 14x² x⁴ - 14x² + 45 = 0 Δ = (- 14)² - (4 * 45) = 16 = 4² x² = (14 ± 4)/2 x² = 7 ± 2 First case: x² = 9 → x = ± 3 Second case: x² = 5 → x = ± √5 We keep only the more convenient solution: x = 3 Recall: y = 3/x → y = 3/3 = 1 Recall: m = (x + y√5) = 3 + √5 Restart a² = (14 + 6√5)/4 a = ± (3 + √5)/2 → given: a > 0 a = (3 + √5)/2 1/a = 2/(3 + √5) 1/a = 2.(3 - √5)/[(3 + √5).(3 - √5)] 1/a = 2.(3 - √5)/[9 - 5] 1/a = 2.(3 - √5)/4 1/a = (3 - √5)/2 Expression a + (1/a) = [(3 + √5)/2] + [(3 - √5)/2] a + (1/a) = [(3 + √5) + (3 - √5)]/2 a + (1/a) = 6/2 a + (1/a) = 3
Time consuming substitution 3 m - 4 = x would have been a better choice.
X=2......May be ^=read as to the power *=read as square root Let R=4+*15 A=4-*15 RA=(4+*15)(4-*16) =4^2-(*15)^2 =16-15=1 So, RA=1 A=1/R....... Eqn1 Let R^x=t As per question t+(1/t)=62 So, (t^2+1)/t =62 t^2+1=62t t^2-62t+1=0 Here a=1,b=(-62),c=1 D=b^2-4ac =(-62)^2 -{4×1×1) =3844-4=3840 *D=*(3840) =(*256)×(*15) =16.*15 So, t={-(-62)±16.*15}/2 =(62+16.*15)/2 =2(31+8.*15)/2 =31+8.*15 =4^2+(*15)^2+(2×4×*15) =(4+*15)^2 =R^2 So, t=R^2 R^x=R^2...(t=R^x) So, X=2 We can also apply logarithmic method...... R^x=R^2 Take log logR^x=logR^2 X. logR=2.logR X=2.logR/logR X=2
{a^4+a^4 ➖ }+{1+1 ➖ }/{a^4 +a^4 ➖ }={a^8+2}/a^8=2a^8/a^8=2a^1 (a ➖ 2a+1).{a+a ➖ }+{1+1 ➖ }/{a+a ➖ }={a^2+2}/a^2=2a^2/a^2=2a^1 (a ➖ 2a+1).
Add 2 & take square root twice. a + 1/a = 3
what is x^p where p=7777 in exponent form we have x=exp(iπ/3) consider p=7777=7776+1 the digit sum of 7776 is 27 which is a multiple of 3 but 7776 is even so it is a multiple of 6 hence p =6n+1 x^p = x. x^6n but x=exp(iπ/3) so x^6n =exp(2nπi)=1 so x^p=x so the answer is x or (1+isqrt3)/2 Does nobody learn the argand diagram any more.
That's what I did Just 1 min question at most Crazy what others are doing
z = (1 + i√3)/2 ← this is a complex number The modulus of z is: m = (1/2).√[(1)² + (√3)²] = (1/2).√[1 + 3] = (1/2).√4 = 1 The modulus of z⁷⁷⁷⁷ will be: M = m⁷⁷⁷⁷ = 1⁷⁷⁷⁷ = 1 The modulus of z is β sush as: tan(β) = (√3)/1 = √3 → β = π/3 The modulus of z⁷⁷⁷⁷ will be: λ = (β * 7777) = 7777 * (π/3) = (7777π)/3 = (7776π + π)/3 = (7776π/3) + (π/3) = 2592π + (π/3) λ = 2592π + (π/3) λ = (1296 * 2π) + (π/3) → but adding an angle of 2π, you can get the same point λ = π/3 z⁷⁷⁷⁷ = M.[cos(λ) + i.sin(λ)] z⁷⁷⁷⁷ = 1.[cos(π/3) + i.sin(π/3)] z⁷⁷⁷⁷ = (1/2) + i.[(√3)/2] z⁷⁷⁷⁷ = (1 + i√3)/2 [(1 + i√3)/2]⁷⁷⁷⁷ = (1 + i√3)/2
Gp formula a(rpowern-1/r-1 =1(27power6-1/27-1
(a^2+1/a^2)^2=a^4+1/a^4+2=47+2=49; (a^2+1/a^2)=7 (a+1/a)^2=a^2+1/a^2+2=7+2=9; (a+1/a)=3
On factorisation of 840 it gives four continued factors. They are 4 × 5 × 6 × 7= 840 (x+1) (x + 2) (x+3) (x +4) =840 (x+1) (x+2) (x+3) (x+4) = (3+1) (3+2) (3+3) (3+4) implies x = 3
Brilliant. There's so much I can learn from you.
We have a^x + a^(-x) = 2.cosh(x), so here cosh(a) = 1000/2 = 500. As cosh(2.a) = 2.((cosh(a))^2)-1, we have cosh(2.a) = 2.(500^2) -1 or cosh(2.a) = 499999, and finally a^(2.a) + a^(-2.a) = 2.cosh(2.a) = 2.499999 = 999998. Simpler: As (X^2) + ((1/X)^2) = ((X + (1/X))^2) -2, so here with X = a^1000 we have a^2000 + a^(-2000) = (((a^1000) + a^(-1000))^2 -2 = (1000^2) - 2 = 999998
(x ➖ 4x+4)/x (x ➖ 2x+2)(x ➖ 2x+2)./x (x ➖ 1x+1) (x ➖ 2x+1)/x (x ➖ 2x+1).
(1+3i/2)^3^4^3^4^3^4^3^4 (1+1i/1)^1^2^2^1^2^2^1^2^2^3^2^2 (i/)^1^1^1^1^1^1^3^1^2 (i/)3^2.(x ➖ 3ix+2).
👍 (x+4)(x+3)(x+2)(x+1) = 840 let x = y - 5/2 (y +3/2)(y+1/2)(y-1/2)(y - 3/2) = 840 (y^2 - 9/4)(y^2 - 1/4) = 840 y^4 - 5y^2/2+9/16 = 840 (y^2 - 5/4)^2 = 841 y^2 = 29+5/4 y^2 = 121/4 y = 11/2 x = y - 5/2 = 3
Nice approach, I like how you used the substitution to simplify the problem!
{(1 + √3i)/2}⁷⁷⁷⁷ = ? {(1 + √3i)/2}² = (1 + √3i)²/4 = (1 + 2√3i - 3)/4 = (- 2 + 2√3i)/4 = (- 1 + √3i)/2 {(1 + √3i)/2}³ = (1 + √3i)³/8 = {1 - 3√3i + 3√3i(1 + √3i)}/8 = {1 - 3√3i + 3√3i - 9)}/8 = - 8/8 = - 1 Let, x = (1 + √3i)/2 , {(1 + √3i)/2}⁷⁷⁷⁷ = k x² = (- 1 + √3i)/2 x³ = - 1 k = x⁷⁷⁷⁷ = x⁷⁷⁷⁶+¹ = x*x⁷⁷⁷⁶ = x*(x⁶)¹²⁹⁶ = x*{(x³)²}¹²⁹⁶ <--- x³ = - 1 = x*{(- 1)²}¹²⁹⁶ = x*1¹²⁹⁶ = x Recall, x = (1 + √3i)/2 ∴ k = (1 + √3i)/2
there is no condition for x, so i think about the real solution is 3 & - 8. (x + 4)!/x! = 840 x!(x + 1)(x + 2)(x + 3)(x + 4)/x! = 840 (x + 1)(x + 2)(x + 3)(x + 4) = 840 (x + 1)(x + 2)(x + 3)(x + 4) = 4*5*6*7 & (x + 1)(x + 2)(x + 3)(x + 4) = (- 7)*(- 6)*(- 5)*(- 4) x + 1 = 4 & x + 1 = - 7 ∴ x = 3 , x = - 8 ∴ eq. must have a factor as '3' & '- 8' (x + 1)(x + 4)(x + 2)(x + 3) = 840 (x² + 5x + 4)(x² + 5x + 6) = 840 (x² + 5x + 4){(x² + 5x + 4) + 2} = 840 (x² + 5x + 4)² + 2(x² + 5x + 4) = 840 x⁴ + 25x² + 16 + 2(5x³ + 20x + 4x²) + 2(x² + 5x + 4) = 840 x⁴ + 10x³ + 35x² + 50x - 816 = 0 x⁴ - 81 + 10x³ - 270 + 35x² - 315 + 50x - 150 = 0 (x⁴ - 3⁴) + 10(x³ - 3³) + 35(x² - 3²) + 50(x - 3) = 0 (x² + 3²)(x + 3)(x - 3) + 10(x - 3)(x² + 3x + 3²) + 35(x + 3)(x - 3) + 50(x - 3) = 0 (x - 3){(x² + 9)(x + 3) + 10(x² + 3x + 9) + 35(x + 3) + 50} = 0 (x² + 9)(x + 3) + 10(x² + 3x + 9) + 35(x + 3) + 50 = 0 x³ + 3x² + 9x + 27 + 10x² + 30x + 90 + 35x + 105 + 50 = 0 x³ + 13x² + 74x + 272 = 0 (x³ + 512) + (13x² + 208x + 832) - (134x + 1072) = 0 (x³ + 8³) + 13(x² + 16x + 8²) - 134(x + 8) = 0 (x + 8)(x² - 8x + 8²) + 13(x + 8)² - 134(x + 8) = 0 (x + 8){(x² - 8x + 8²) + 13(x + 8) - 134} = 0 (x + 8)(x² - 8x + 64 + 13x + 104 - 134) = 0 (x + 8)(x² + 5x + 34) = 0 ∴ (x - 3)(x + 8)(x² + 5x + 34) = 0 x² + 5x + 34 = 0 D = 5² - 4*1* 34 < 0 rejected ∴ (x - 3)(x + 8) = 0 ∴ x = 3 , x = - 8
If we take x = -8 Then the numerator will be factorial of - ve 4 And Denominator will be factorial of - ve 8 But factorial always be of a positive number and zero. Hence x = -8 may not be taken as an answer. Please see.
We may take a brief logical approach please. The LHS is a number (840) expressed in ratio of two Factorials. The factorial as the Numerator is greater than the factorial as the Denominator Now 6!= 720 As the N/D is greater than 720 we may say that numerator will be a factorial greater than 6! So just take the Numerator =7! = (x +4)!=5040 Here x =3 So Denominator will be x! =3! Now 7!/3! =5040/6=840 Hence x =3 is the required answer.
बीच में साइन ठीक करें
(x^9 + x^8 + x^7)/(x^10 + x^8 + x^6) = 15/45 [x^8(x + 1 + 1/x)]/[x^8(x² + 1 + 1/x²)] = 1/3 (x + 1 + 1/x)/(x² + 1 + 1/x²) = 1/3 let t = x + 1/x, t² = x² + 1/x² + 2, x² + 1/x² = t² - 2 (x + 1 + 1/x)/(x² + 1 + 1/x²) = 1/3 (t + 1)/(t² - 2 + 1) = 1/3 (t + 1)/(t² - 1) = 1/3 (t + 1)/[(t + 1)(t-1)] = 1/3 1/(t - 1) = 1/3 t - 1 = 3, t = 4 ∴ x + 1/x = 4 x² - 4x + 1 = 0, x = 2±√3
=>(×+4)(×+3)(×+2)(×+1)=840 =5(4)(3)(2)7=7.6.5.4 =>×+1=4&×=3
elevando al quadrato la prima espressione e il risultato si ottiene: 1000^2 - 2 cioè 999998
elevando al quadrato la prima espressione e il risultato si ottiene: 1000^2 - 2 cioè 999998
Duh, where am I? I just fainted.
Solution by insight (a+b)^2+(a-b)^2= 2(a^2+b^2)= 2(16+15)=62 x=2 And. a+b=1/(a-b) x=-2 is also an answer
Be f: x ---> (4 + sqrt(15))^x + (4 - sqrt(15))^x. f(x) = (4 + sqrt(15))^x + (4 + sqrt(15))^(-x) = exp(x.ln(4 + sqrt(15))) + exp(-x.ln(4 + sqrt(15))) = 2.cosh(x.ln(4 + sqrt(15))) f verifies f(x) = f(-x) for any real x, and if we limit f at R+ then it is a bijection from R+ to [2, + infinity[ As 65 is in [2, +infinity], the equation f(x) = 65 has an unique solution x0 on R+ and an unique solution -x0 on R- As x0 = 2 is evident solution we then have that the given equation has two solutions and only two: 2 and -2.
If you check the absolute value of x, it turns out to be 1. Also x can be written as e^(iπ/6) . Then taking any power is much easier.
Can be substituted (1 +√3i) = p Transpose and square it giving you p^2 -p +1=0 Multiply it with (p+1) B/S Give you P^3 + 1= 0 P^3 = - 1 (1) square it B/S P^6 = 1 ...... (2) now 7777 = 1296×6+1, as such P^7777 = (P^6) ^1296×P = 1×(1+√3i) /2
YOUR CALCULATION IS WRONG, THERE IS NO SUBSTRACTION..
Nice solution and good explanation
Thank you
Sorry, typo. Let 27 = a. Let answer value = S. (a-1)S = a^6 -1. Therefore, S = (a^6 - 1) / (a - 1) = (27^6 - 1) / (27 - 1) = 14,900,788. So simple! Do not show the stupid method.
There are multiple methods for finding answers in mathematic subject and please keep in mind, there no one is is stupid method,it's depends on our thinking ability
❤ also cube root (√5+2) - cube root (√5 - 2) = 1
a¹⁰⁰⁰ + a-¹⁰⁰⁰ = 1000 a²⁰⁰⁰ + a-²⁰⁰⁰ = ? a¹⁰⁰⁰ + a-¹⁰⁰⁰ = 1000 a¹⁰⁰⁰ + 1/a¹⁰⁰⁰ = 1000 Let, a²⁰⁰⁰ + a-²⁰⁰⁰ = k k = a²⁰⁰⁰ + a-²⁰⁰⁰ = (a¹⁰⁰⁰)² + (1/a¹⁰⁰⁰)² = (a¹⁰⁰⁰ + 1/a¹⁰⁰⁰)² - 2 = (1,000)² - 2 = 1,000,000 - 2 = 999,998
Very very very slow explanation boring
लगता है तुम्हे म्यथ्स सब्जेक्ट ही बोर है।
The walk of mathematics is adventurous. So, Sir, You shouldn't present opinion like this.