Second order differential equation for spring-mass systems

Поділитися
Вставка
  • Опубліковано 24 січ 2025

КОМЕНТАРІ • 55

  • @chandrajha3036
    @chandrajha3036 23 дні тому +2

    m from India and just by chance i opened this video and tbh ur teaching style is just amazing and wanna give me compliment that u r so cute.

    • @bevinmaultsby
      @bevinmaultsby  23 дні тому

      Thank you! I'm happy you like my teaching style.

  • @IntegrandoADNdelasMatematicas
    @IntegrandoADNdelasMatematicas Місяць тому +2

    Your classes is helping me to clarify some concepts

  • @JulianKimbleUW
    @JulianKimbleUW 2 місяці тому +1

    What a life saver. Best video I've seen on the topic!

    • @bevinmaultsby
      @bevinmaultsby  2 місяці тому

      Great to hear! Thanks for watching

  • @maxrybold1531
    @maxrybold1531 8 місяців тому +2

    I used this tutorial to brush up my understanding of characteristic equations that describe the behavior of a spring mass damper system to confirm simulation results, via Desmos, of essentially the same system outlined in a SolidWorks tutorial textbook. Great explanations, thanks!

  • @samblake9953
    @samblake9953 11 місяців тому +1

    Awesome stuff! Super clear and I love the fade outs and ins!!

    • @bevinmaultsby
      @bevinmaultsby  11 місяців тому

      Thanks so much! I'm glad you enjoyed it.

  • @Ivan-mp6ff
    @Ivan-mp6ff 7 місяців тому +1

    so pleasurable to watch, informative and detailed. Pretty in all aspects. Thank you

    • @bevinmaultsby
      @bevinmaultsby  7 місяців тому

      You’re welcome! Glad you enjoyed it

  • @rachelb7500
    @rachelb7500 2 місяці тому +1

    This was so clear and helpful! Thank you so much for sharing

  • @NamelessProducts
    @NamelessProducts 8 місяців тому +1

    Im trying to learn qualitative analysis of nonlinear 2nd order differential equations and all the examples so far have been in springs. This helped a lot. Thank you.

    • @bevinmaultsby
      @bevinmaultsby  8 місяців тому +1

      Excellent! The reason is that spring-mass systems are nice harmonic oscillators (when a system experiences a restoring force proportional to its displacement).

  • @thomashowe1920
    @thomashowe1920 Рік тому +1

    Clear and concise. I wish I had access to this when I took this class.

  • @tusharnath2408
    @tusharnath2408 10 місяців тому +1

    Excellent Video. Thank you for it.

    • @bevinmaultsby
      @bevinmaultsby  10 місяців тому

      You're very welcome, I'm glad you enjoyed it!

  • @nowardchaselenkana8596
    @nowardchaselenkana8596 8 місяців тому +1

    clear and straight forward... cheers Doc

  • @ShakilAhmedBhuiyan
    @ShakilAhmedBhuiyan Рік тому +1

    Very precise lecture. Very easy to understand.

  • @navanithnavanith773
    @navanithnavanith773 8 місяців тому +1

    Very clear and precise explanation , helped me understand the concept very quickly. You saved my semester marks 😀😀😀

    • @bevinmaultsby
      @bevinmaultsby  8 місяців тому

      Glad it helped! Springs are fun :)

  • @Ivan-mp6ff
    @Ivan-mp6ff 7 місяців тому

    At about 23:23, critical damping, what would be the corresponding units of C1 and C2 in order to be consistent with the dimension of LHS of the equation, i.e.distance? I am trying to do a dimensional analysis on it. Thank you.

    • @bevinmaultsby
      @bevinmaultsby  7 місяців тому +1

      Great question! Assuming we are working standard units, C1 would be meters, and C2 would be meters/second. Exponential functions are dimensionless, so we don't associated any units to the first term. Then it would need to be m + (m/s)s. Hope that helps!

    • @Ivan-mp6ff
      @Ivan-mp6ff 7 місяців тому

      Thank you for the prompt reply.
      I was interested in the units because it may shed light on where could they have come from. I am a medical doctor interested in linking engineering science to medical science and your quality uploads help tremendously. Now that I have confirmed by your helped that they are of different units, when I model vibration and natural frequency to living tissues, I know these seemingly arbitrary constants actually come from different sources. Thank you once again for being my virtual tutor
      Hope your generosity will continue to grace me with more knowledge that will benefit my patients in the near future.

    • @bevinmaultsby
      @bevinmaultsby  7 місяців тому

      @@Ivan-mp6ff What interesting concepts you must be studying. I'm glad my videos are helpful!

  • @Jacoblikesyoutube
    @Jacoblikesyoutube 11 місяців тому +1

    I'm a little lost on the step at 16:45, the last step of the first example. x(t) = cos(2t) because it's the only value at the initial condition that equals 0? So in another situation if both trig functions provided a non-zero output, we might end up with x(t) = c_1 * cos(2t) + c_2 * sin(2t)?
    Is it effectively always x(t) = c_1 * cos(2t) + c_2 * sin(2t) but the result in the first example simplifies to x(t) = cos(2t)?

    • @bevinmaultsby
      @bevinmaultsby  11 місяців тому

      Yes--you're understanding this correctly. The general form of the solution is x(t) = c_1* cos(2t) + c_2*sin(2t), where the coefficients c_1 and c_2 are determined by initial conditions. In this particular scenario, with x(0)=1 and x'(0)=0, it turns out that c_1=1 and c_2=0. Here's a different scenario you can work through: if x(0)=2 and x'(0)=1, then c_1 = 2 and c_2 = 1/2. Then the solution would be x(t) = 2*cos(2t) + 1/2 * sin(2t). Does that help?

    • @Jacoblikesyoutube
      @Jacoblikesyoutube 11 місяців тому

      @@bevinmaultsby Yeah that makes sense! In this scenario you would need to also handling it like the second example that was underdamped?

    • @bevinmaultsby
      @bevinmaultsby  11 місяців тому

      @@Jacoblikesyoutube Maybe, what do you mean by handling? I want to make sure you're making the right connection between the examples.

    • @Jacoblikesyoutube
      @Jacoblikesyoutube 11 місяців тому

      @@bevinmaultsby My understanding is that the key difference between the 4 examples is the damping coefficient. In the scenario of your earlier reply where c_1 = 2 and c_2 = 1/2 then the damping effect would be underdamped and thus we would have to find the complex roots values and proceed in a method similar to the 2nd example.

  • @reaganjustice
    @reaganjustice 2 місяці тому +1

    why cant you be my teacher for diff equ? thank you so much

  • @Durr-E-Shehwar-lf3ln
    @Durr-E-Shehwar-lf3ln 3 місяці тому +1

    Thanks for such explanation ❤️

  • @padraiggluck2980
    @padraiggluck2980 Місяць тому +1

    Nice presentation. I don’t understand where the t comes from in ex.3 in (c1 + c2*t).

  • @enigmath0630
    @enigmath0630 9 місяців тому +1

    Excellent!

  • @kaartikvij9328
    @kaartikvij9328 8 місяців тому +1

    thanks a lot mam, u really did grt

  • @neeb
    @neeb 10 місяців тому +1

    Thank you

  • @mattbabik8417
    @mattbabik8417 Рік тому

    I get 12/35 and 2/35 for the last problem when I put it into wolfram alpha to solve

    • @bevinmaultsby
      @bevinmaultsby  Рік тому

      Hmm, I just checked
      f[t_] := (12/37) Cos[t] + (2/37) Sin[t]
      f''[t] + .5 f'[t] + 4 f[t] // FullSimplify
      and got cos(t). How did you evaluate it?

    • @mattbabik8417
      @mattbabik8417 Рік тому +1

      @@bevinmaultsby oops i missed a minus sign. Sorry for doubting 🙏. Amazing video though. I am trying to understand the math behind MR elastography calculations and this helped a lot on the differential side.

    • @bevinmaultsby
      @bevinmaultsby  Рік тому

      No worries... I'm glad this was helpful, what an interesting subject to study! Good luck.

  • @xghostable8850
    @xghostable8850 6 місяців тому +1

    Noice video