Auxiliary equations with repeated roots

Поділитися
Вставка
  • Опубліковано 25 січ 2025

КОМЕНТАРІ • 64

  • @alef-0
    @alef-0 3 роки тому +25

    This differential series is a god send. I was getting pissed at my professor because he was always explaining like it was the most obvious thing in the world, which by your way it always is, there's always an intuition to it.
    Only with your videos I can survive the periods in my college, since because of corona I will have three in this year, so less time for this class.

  • @markb4976
    @markb4976 6 місяців тому +2

    This guy is a great math teacher!
    Wish I had him as one of my profs

  • @jaceallen7609
    @jaceallen7609 5 років тому +45

    This guy should do magic shows. He really can read my mind. 14:12

  • @monlisimon
    @monlisimon 7 років тому +20

    You are saving my semester!!!

  • @orangebottle7061
    @orangebottle7061 3 роки тому +5

    Finally my concepts are getting cleared .....thanks a lot for this series of differential equations

  • @mirhanan5592
    @mirhanan5592 7 років тому +26

    man you are just awesome....

  • @hellbark
    @hellbark 6 років тому +1

    Really. This channel of math is far far better

  • @khubaibsalim1228
    @khubaibsalim1228 Місяць тому

    Bro just saved me ❤

  • @ba-karaktrat
    @ba-karaktrat 4 роки тому

    When I graduate with Engineering degree I will send it to you 🤣 you saved me through so much and still with the vids thanks man .... thank you so much

  • @truesonsilo2264
    @truesonsilo2264 9 місяців тому

    you are amazing men👏👏

  • @IIAryanMajmudarII
    @IIAryanMajmudarII 2 роки тому +1

    This video is brilliant thank you so much

  • @willyh.r.1216
    @willyh.r.1216 4 роки тому

    Good refresher man, keep it up...you're a great Math Teacher!!!

  • @carlfels2571
    @carlfels2571 6 років тому +3

    I will attend Calc3 next semester, thanks for an intreduction just before the new semester 😀

    • @leonardobarrera2816
      @leonardobarrera2816 Рік тому +1

      I didn't new it is calc 3!!!
      I thought it was a easy topic (I never have calc 1)
      xd

  • @rounaqish
    @rounaqish 6 років тому

    you are doing great job , way of teaching is good and simple. Thanks

  • @quasiebowen1686
    @quasiebowen1686 6 років тому

    very nicely done, easy to understand ...thanks alot

  • @l3igl2eaper
    @l3igl2eaper 6 років тому +2

    Will going through the reduction of orders process always yield all the solutions?

  • @jonathan_chae
    @jonathan_chae 3 роки тому

    Thank you so much! your videos are always helpful and well explained.

  • @phenylalanine8145
    @phenylalanine8145 5 років тому +3

    Thank you that was a good explaination but what about if the root was negative ?

    • @joluju2375
      @joluju2375 5 років тому

      I'd like to know, too.

    • @krs-fltutorials4487
      @krs-fltutorials4487 5 років тому

      @@joluju2375 Complex numbers.

    • @benwinstanleymusic
      @benwinstanleymusic 5 років тому

      Khan academy has a video addressing that, it involves Euler's formula

    • @carultch
      @carultch Рік тому +1

      If the input to the square root is negative, you get complex roots. The solution ends up taking on the form of e^(c*t) * (A*cos(w*t) + B*sin(w*t)), where r's solutions are r = c +/- w*i, where i is the imaginary unit.
      In the event that your roots are both purely imaginary, then the exponential envelope term disappears, and you just get a linear combination of sine and cosine.

    • @phenylalanine8145
      @phenylalanine8145 Рік тому

      @@carultch thank you for your answer

  • @ziadhossam5862
    @ziadhossam5862 7 років тому +1

    you're amazing i owe you aloooot

  • @markkleiman6531
    @markkleiman6531 3 роки тому

    Math is fun with B&Rpen... Thank you!

  • @Seeker-pq4ec
    @Seeker-pq4ec Місяць тому

    Why integration of zero is constant?

  • @hanwadou1777
    @hanwadou1777 7 років тому +4

    teacher can you do more pleasssssse !!!!! I beg you

  • @faiziliyaskhan
    @faiziliyaskhan 3 роки тому

    amazing..thanks

  • @sirius.aeternus
    @sirius.aeternus 4 роки тому

    great video!

  • @joanchepkorir6787
    @joanchepkorir6787 6 місяців тому

    What if we have been given conditions

  • @Playboyy1985
    @Playboyy1985 7 років тому +2

    so do you always just add t to e^t or x to e^x ?

    • @carultch
      @carultch Рік тому +1

      Yes. And if there is a thrice repeated root, you would square the t, or square the x, when setting up your three component functions. So you'd get A*e^(r*t) + B*t*e^(r*t) + C*t^2*e^(r*t)

  • @urano4810
    @urano4810 5 років тому +1

    Are auxiliary equations the same thing as homogeneous equations?

  • @danrobertluarez4318
    @danrobertluarez4318 5 років тому

    Teacher When your put the value of the double prime to the orginal formula why dont you square the first term like the original formula?

  • @GHOSTRIDER4EVER
    @GHOSTRIDER4EVER 3 роки тому

    That screen change tho: yeeeeet he knows me now and my mind too

  • @earl8295
    @earl8295 4 роки тому

    Thanks alot for your help !!

  • @aljoker3053
    @aljoker3053 3 роки тому +1

    A coil of inductance L Henry and a capacitor of C Farad are connected in series if I=I0, Q=Q0 when t=0 Find: Q and I when t

    • @carultch
      @carultch Рік тому +1

      Use Kirchhoff's laws to add up the voltage around the loop. The "voltage drop" across the inductor and the voltage drop across the capacitor must add up to zero:
      L*q" + q/C = 0
      where q is the charge on the capacitor. I have my reasons for quoting voltage drop for the inductor, since it isn't technically a voltage drop, but for our purposes, we can call it that and go through the same mental exercise as if it were a voltage drop.
      We are solving for q(t).
      Assume the solution is:
      q(t) = e^(r*t)
      This means:
      (L*r^2 + 1/C)*e^(r*t) = 0
      Solve for when the first term equals zero:
      L*r^2 = -1/C
      r^2 = -1/(L*C)
      r = +/- j*sqrt(1/(L*C)), where j is the imaginary unit
      Let w = sqrt(1/(L*C))
      Since we have imaginary solutions for r, this means the solution is a linear combination of sine and cosine.
      q(t) = A*cos(w*t) + B*sin(w*t)
      Its derivative is the current:
      I(t) = q'(t) = -A*w*sin(w*t) + B*w*cos(w*t)
      At t=0, q(t) = Q0, and I(t) = I0.
      This means:
      A = Q0, and B = I0/w
      So our solution is:
      q(t) = Q0*cos(t/sqrt(L*C)) + I0*sqrt(L*C) * sin(t/sqrt(L*C))
      I(t) = -Q0/sqrt(L*C) * sin(t/sqrt(L*C)) + I0*cos(t/sqrt(L*C))

  • @amiramnoamdoron
    @amiramnoamdoron 4 роки тому

    Super

  • @ioannaathineos5269
    @ioannaathineos5269 10 місяців тому

    KING

  • @teotyrov
    @teotyrov 7 років тому +1

    how do you know that there are no other solutions?

    • @AndDiracisHisProphet
      @AndDiracisHisProphet 7 років тому +9

      nth order differential equations have n different (i.e. linearly independent) solutions. since he found two, you know there are no other solutions

    • @joluju2375
      @joluju2375 5 років тому

      @@AndDiracisHisProphet Thanks, I didn't know that. When were you taught that, is there a video demo somewhere ?

    • @AndDiracisHisProphet
      @AndDiracisHisProphet 5 років тому

      @@joluju2375
      Hm, I dunno. Maybe in 2nd Semester or maybe earlier. That is relativly elementary ODE stuff. Although I couldn't shake a proof out of my sleeve from the top of my head.

    • @joluju2375
      @joluju2375 5 років тому

      ​@@AndDiracisHisProphet The truth is I haven't opened a math book for 40 years and was never taught ODE. But bprp is so good at explaining things that now I'm learning a lot of new things, far above the maths level we have at 18 in my country, I don't know the american name for that level.

    • @AndDiracisHisProphet
      @AndDiracisHisProphet 5 років тому +1

      @@joluju2375 I'M not american either :)
      ODE is University level, although I had a little bit in my physics course in school.
      Have fun with mathematics :)
      bprp is really cool, although his stuff is more about calculating and less about proving

  • @glenne1
    @glenne1 6 років тому

    HI How can v'' e^3t never becomes zero? @blackpenredpen

    • @andyu245
      @andyu245 5 років тому +2

      e to any power is never zero, try to find x so that e^x equals 0, you won't find it, it doesn't exist

    • @urano4810
      @urano4810 5 років тому

      and this is because e is a constant
      So e^1=e
      And e^0=1
      Friendly reminder

  • @jonfisher72
    @jonfisher72 3 роки тому

    My professor, makes no sense
    @blackpenredpen, makes sense

  • @skips2795
    @skips2795 11 місяців тому +1

    you are my math jesus

  • @merlijn1e
    @merlijn1e 4 роки тому

    I love you

  • @SeriousApache
    @SeriousApache 6 років тому

    K stands for "Konstant"

  • @KingofArmageddon20
    @KingofArmageddon20 6 років тому

    You talk too fast and your accent doesn’t help at all, slow down please!

    • @phuongnguyen-kc8hi
      @phuongnguyen-kc8hi 6 років тому +10

      This is math not english class stop complaining. I understand him just fine. His technique and explain helps me refreshing and understanding more into the topic. This is a plus. When you study math you just have to focus and do lots of practice problems.