An Interesting Exponential Equation

Поділитися
Вставка
  • Опубліковано 13 гру 2024

КОМЕНТАРІ • 19

  • @山山-y4q
    @山山-y4q 15 годин тому +3

    If you align the left and right expressions by aligning the shape of the binomial product by 2,3 and pay attention to the exponent, you can find that the exponent of the left side 2 is x = 1.
    Now x = 1 is
    It is certain that it is an answer. Even so, if you check if the index of 3 is 1, it will be an answer.

  • @scottleung9587
    @scottleung9587 15 годин тому +1

    Nice!

  • @chillwhale07
    @chillwhale07 14 годин тому +2

    Second solution is approximately -5.17 😊

    • @Qermaq
      @Qermaq 11 годин тому +1

      It's frighteningly close to -206797/40000.

    • @rakenzarnsworld2
      @rakenzarnsworld2 9 годин тому +1

      ​@@QermaqLol I thought it was irrational number

    • @chillwhale07
      @chillwhale07 7 годин тому +1

      @Qermaq wow that's more accurate.

    • @Qermaq
      @Qermaq 7 годин тому

      @@rakenzarnsworld2 It is. It's that fraction plus something like 0,00005 something.

  • @Qermaq
    @Qermaq 11 годин тому

    Good one!
    Hey, off-topic, but wanted to ask: I've been playing with cubics where the a term is 1 and the c term is 0, so x^3 + bx^2 + d = 0. I "discovered" (I'm sure I am not the first) a parameterization where if the roots are ak, a(k^2 - k) and a(1-k), the resulting cubic is x^3 - a(k^2 - k + 1)x^2 + (a^3)(k^2)((k - 1)^2) = 0. So if a and k are 2, we get x^3 - 14x^2 + 288 = 0, and the roots are 6, 12 and -4. Have you seen something like this? Is this going to generate all these depressed cubics, or just some? Is this useful to leverage to solve these? Anyway, I found it interesting and fun.

  • @TejasDhuri-p8z
    @TejasDhuri-p8z 15 годин тому +2

    X=1 by looking at it

    • @frendlyleaf6187
      @frendlyleaf6187 14 годин тому +2

      Ah yes any engineer's favourite method: solution by observation

    • @chillwhale07
      @chillwhale07 14 годин тому +2

      You can't solve by looking at it bro 😂

  • @Quest3669
    @Quest3669 17 годин тому +3

    X= 1

  • @dbaznr
    @dbaznr 8 годин тому

    Just by sight, x = 1

  • @AlexIohannsen
    @AlexIohannsen 9 годин тому

    x ≠ -2;
    2^(x - 1) * 3^(3x/(x + 2) - 1) = 1
    take log_2 of both sides:
    (x - 1) + (2x - 2) * log_2(3)/(x + 2) = 0
    multiply both sides by (x + 2) ≠ 0
    (x - 1) (x + 2 + 2log_2(3)) = 0
    x = 1 or
    x = - 2 - 2log_2(3) = - log_2(36)

  • @rakenzarnsworld2
    @rakenzarnsworld2 9 годин тому

    x = 1

  • @giuseppemalaguti435
    @giuseppemalaguti435 11 годин тому

    x=1,x=-ln36/ln3...no,devo rifare i calcoli..x=-ln36/ln2=-5,17..ecco,this Is correct