An Interesting Homemade Hexadecic Equation

Поділитися
Вставка
  • Опубліковано 13 гру 2024

КОМЕНТАРІ • 29

  • @rainerzufall42
    @rainerzufall42 5 днів тому +13

    There are 12 missing solutions, too bad!

    • @philipfoy7117
      @philipfoy7117 17 годин тому +1

      I actually guessed successfully the 4 solutions +-1 and +-i before I even solved. Crazy 🤣

  • @AntimatterBeam8954
    @AntimatterBeam8954 4 дні тому

    You are so bubbly and enthusiastic, I love it! I too adore maths.

  • @nickarrizza
    @nickarrizza 5 днів тому +1

    Very cool! We could feel your growing enthusiasm! Thanks!

    • @SyberMath
      @SyberMath  4 дні тому +1

      Glad you liked it! 🤩

  • @hazalouldi7130
    @hazalouldi7130 5 днів тому +4

    what about the second factor?

  • @scottleung9587
    @scottleung9587 5 днів тому

    Cool!

  • @braydentaylor4639
    @braydentaylor4639 5 днів тому +1

    Hey, is it okay if you do my request next? I put it in the comment section of the last video.

  • @yoav613
    @yoav613 5 днів тому

    Very nice

  • @rainerzufall42
    @rainerzufall42 5 днів тому +1

    y = f(x), x = f(y)... wait! f(f(x)) = id(x) = x ? Nice functional equation... and then back to f(x) = x^4 + x - 1...

  • @bhaskardas8145
    @bhaskardas8145 5 днів тому

    Sir could you please tell me a math keyboard app from which I can write math symbols like 3^2n on youtube thumbnail?

    • @SyberMath
      @SyberMath  4 дні тому

      You can use this: lingojam.com/SuperscriptGenerator

  • @angelishify
    @angelishify 4 дні тому

    Why don't you subtract x^4 on boath sides?

    • @SyberMath
      @SyberMath  4 дні тому

      Does that help?

    • @angelishify
      @angelishify 4 дні тому

      @@SyberMath Yes. You can factorise left side and get one of the factors (x^4 - 1) and on the right you have the same thing exposing -2.

  • @rakenzarnsworld2
    @rakenzarnsworld2 5 днів тому

    x = 1 or -1

  • @bayareapianist
    @bayareapianist 5 днів тому +1

    I could easily say x =- 1 and x=1 are the answers by substitutions.

  • @rainerzufall42
    @rainerzufall42 5 днів тому +2

    (x + y) (x² + y²) + 2 = 0 has still to be solved. Should deliver 3 solutions with 3 * 4 = 12 solutions overall! Our 4 plus 12 = 16. ✅
    We can also write it as (x + y) (x² + y²) = -2. So we need to find two numbers, so that the product is -2. If we find a pair, the rest should be easy. But let's simplify first: x² + y² = (x + iy) (x - iy) = x² - (iy)² = x² - (-y²). ✅ This didn't help much, but it's good to see the geometry.
    Let's assume, x + y = z = c + 0i real. So x² + y² = -2 / c also real. z² = x² + 2xy + y² also real. => xy also real! y = s * conj(x).
    But x² + y² was real, so s = 0 (and a = 0 ∨ b = 0) or s = 1.
    Case s = 0: y = 0, x^3 = -2. => x = - ∛2 ✅(∨ x = ∛2 (½ + ½√3 i) ✅∨ x = ∛2 (½ - ½√3 i) ✅).
    Symmetry: x and y can be switched without changing the result! F.e. x = 0 and y = - ∛2 is also a valid solution. ✅
    Case s = 1: y = conj(x) = |x|² / x. x = a + b i, y = a - b i, 2xy = 2 |x|² = 2 (a² + b²). iy = b + a i, x + y = 2a = c.
    -2 / c = -1 / a = x² + y² = 2 a² - 2 b² = 2 (a + b) (a - b). b = 0, 2 a³ = -1 => x = y = - 1/∛2 solves this. ✅
    All the x = y solutions lead back to x^4 - 1 = 0 = y^4 - 1 system from the video.

  • @williamspostoronnim9845
    @williamspostoronnim9845 5 днів тому +1

    Все красиво, но... неужели нельзя не трещать как пулемёт, а говорить с толком и расстоновкой?

    • @shentakuki
      @shentakuki 5 днів тому

      Чел, я его смотрю на двойной скорости, и все норм 👍🏻 Так что дело в тебе.

  • @dan-florinchereches4892
    @dan-florinchereches4892 5 днів тому +2

    I think we can observe that X=1 is a solution and X=-1 is also a solution. This means we can divide by x^2-1. This justifies splitting 2 into 1+1 and moving one of the 1s to the left hand side
    (X^4+x-1)^4-1=1-x^4
    ((X^4+x-1)^2-1)((X^2+x-1)^2+1)=-(x^2-1)(x^2+1)
    (X^4+X)(X^4+x-2)((X^4+x-1)^2+1)+(X-1)(X+1)(X^2+1)=0
    X(X+1)(x^2-x+1)(x-1)(x^3+x^2+X+1+1)(...)+(X+1)(x-1)(x^2+1)=0 we know X=1 and X=-1 are solutions so we can look for the other solutions from the remainder polynomial
    X(x^2-x+1)(x^3+x^2+X+2)((x^4+x-1)^2+1)+x^2+1=0
    X^2-x+1=(x-1/2)^2+3)4>0 and the last paranthesis is always >0
    So the only solution is possible when
    X*(x^3+x^2+X+2)

    • @robertveith6383
      @robertveith6383 5 днів тому +1

      Do **NOT** use X and x together! They represent *different* variables. Stick exclusively with either the lower case or the upper case.

    • @rakenzarnsworld2
      @rakenzarnsworld2 5 днів тому

      ​@@robertveith6383Lol

    • @ВиталийТруш-н1р
      @ВиталийТруш-н1р 4 дні тому

      Secant method (calculated online)
      -1,189012...
      -0,19032...

  • @Don-Ensley
    @Don-Ensley 4 дні тому

    problem
    (x⁴ + x -1)⁴ = 2 - x⁴
    According to the ingenious solution method of substitution in the video,
    (x⁴ + x -1)⁴ + x⁴ = 2
    (x⁴ + x -1)⁴ + x⁴ + x - 1 = 2 + x - 1
    = x + 1
    x = (x⁴ + x -1)⁴ + (x⁴ + x - 1) - 1
    Make the substitution
    y = x⁴ + x -1
    So we now have the system
    y = x⁴ + x -1
    x = y⁴ + y - 1
    Subtract to get
    y-x = x⁴-y⁴ + x -y
    x⁴-y⁴ + 2(x -y) = 0
    (x²-y²)(x² +y²) + 2(x-y) = 0
    (x-y)(x+y)(x² +y²)+2(x-y) = 0
    (x-y) [ (x+y)(x² +y²)+2 ] = 0
    By the zero product property
    x-y = 0
    x = y
    x = x⁴ + x - 1
    x⁴-1 = 0
    (x²-1)(x² +1) = 0
    (x-1)(x+1)(x-i)(x+i) = 0
    Roots from this equation are
    x = -1, 1, -i, i
    To add to what was in the video, the remaining equation using that system is
    (x+y)(x²+y²)+2 = 0
    (x+y)(x² +y²) = -2
    It has been verified that setting each factor to a factor of -2 does not solve this system.
    I tried several factors of -2 to no avail.
    answer
    x ∈ {
    -1,
    1,
    -i,
    i,
    }