Matrix Form Simple Linear Regression

Поділитися
Вставка
  • Опубліковано 3 січ 2025

КОМЕНТАРІ • 29

  • @waldoungerer9851
    @waldoungerer9851 11 місяців тому +3

    Yes, my boer brother! You give us a good name. Well educated

  • @bencepaul3497
    @bencepaul3497 5 місяців тому +1

    Excellent explanation. Just what I needed!

  • @pratik.patil87
    @pratik.patil87 Рік тому +1

    I was looking for this breakdown for a long time. Thanks a lot mate

  • @marounsader318
    @marounsader318 5 місяців тому +2

    this what we call a math teacher!

  • @meghajessica
    @meghajessica Рік тому

    One of the best education videos!!!!! GOD BLESSSS YOUU & YOUR BEAUTIFUL FAMILY BROTHER !!!!!!!!! PLS KEEP UP THE GOOD WORK!

  • @chariezwane3981
    @chariezwane3981 3 роки тому +3

    Thank you so much for making this video. You just saved my Econometrics behind today.

    • @BoerCommander
      @BoerCommander  3 роки тому +1

      Glad to help Charie! It brings me joy to know that I am helping.

  • @viveksavita06
    @viveksavita06 3 роки тому +3

    I have seen many videos but this one explain a bit in more details like formulas used in linear regression. Great work!

  • @imdadood5705
    @imdadood5705 3 роки тому +5

    I am data Science student. I wanted to see how this was derived. This summed it up perfectly! Thanks

  • @mivedi
    @mivedi Рік тому

    Wow! I have been searching this lessons! I just found it and understand your easy way of explanation. 🙏 I keep flowing your channel.

  • @scorpio19771111
    @scorpio19771111 3 роки тому +3

    Excellent explanation and demo! 👏🏻👏🏻👏🏻 Thank you so much.
    This video deserves to be much much higher in youtube search results!

  • @robharwood3538
    @robharwood3538 3 роки тому +5

    Nice summarization and explanation of what the matrix form for simple linear regression model looks like, what it is made from, and how it can be constructed. Thanks! You have a good presentation/teaching style, IMO. I hope your channel grows, to help more people. Thanks again!

  • @SNawaz-bk7py
    @SNawaz-bk7py Рік тому

    Thanks man. You are a lifesaver

  • @mannur2248
    @mannur2248 3 роки тому +2

    Keep up the neat work. Really good work.

  • @liamhoward2208
    @liamhoward2208 3 роки тому +1

    Great and Elegant explanation. Thank you

  • @effortlessjapanese123
    @effortlessjapanese123 Рік тому

    hey! you were in my recommendation again!

  • @myeshafarzanatahi9154
    @myeshafarzanatahi9154 Рік тому +1

    Thank you so much

  • @AakashSingh-qu8hk
    @AakashSingh-qu8hk 2 роки тому

    This helped a lot Thank you so much

  • @BoerCommander
    @BoerCommander  4 роки тому +2

    0:00 Introduction and Design Matrix
    02:00 Beta Hat Formula
    02:42 The matrix X'X
    06:24 Inverse of X'X
    09:28 The matrix X'Y

  • @rachadlakis1
    @rachadlakis1 2 роки тому +1

    Thanks!!!!

  • @gcumauma3319
    @gcumauma3319 3 роки тому +2

    Thanks Boer

    • @BoerCommander
      @BoerCommander  3 роки тому

      It is my pleasure to be of service gcuma.

  • @lofibeatz990
    @lofibeatz990 2 роки тому

    I did not understand 8:52 how was sum of xi sqared and n times xbar squared equal to sum of xi-xbar squared it should be xi^2 -xbar only let me explain you with an example if suppose x is -2 and mean is 1 then xi^2 - xbar would give you 3 while (xi-xbar)^2 will give you 9 that is (-2-1)^2 ..... on expanding (xi-xbar)^2 would be xi^2 - 2xixbar +xbar^2 not xi^2 - xbar

  • @effortlessjapanese123
    @effortlessjapanese123 2 роки тому

    this is amazing! where are you from?

  • @janslesp
    @janslesp 2 роки тому +1

    Somethig strange:
    the equation ...
    BETA_HAT=X.I@Y
    ...in Python (Numpy) give us the same solution of ....
    BETA_HAT=(X.T@X).I@X.T@Y.
    Try it!

    • @BoerCommander
      @BoerCommander  2 роки тому +1

      Hi janslesp, a good foray into the calculations and good work on applying the thinking in python. Have a go with a design matrix x that is not square and you will see that the equation does not work then.
      Your equation works if the matrix X is an invertible square matrix but it will not work when X is not square.
      try the example below.
      x = np.array([[1,2,3,3],
      [1,5,7,34],
      [1,4,3,6]])
      y = np.array([2,6,7])
      # beta_hat runs fine
      beta_hat = np.linalg.inv(x.T @ x) @ x.T @ y
      # this line of code will raise an error as x is not #square
      beta_hat_2 = np.linalg.inv(x) @ y

    • @janslesp
      @janslesp 2 роки тому

      @@BoerCommander Hello Boer. I'm trying to understand these rules of this wonderful universe of linear algebra, Python and Machine Learning. You have no idea the pleasure of exchanging information with talents from other countries. I'm not a data science professional and I'm trying to overcome my difficulties. Thank you. Today I went back to playing a little on the computer. I used the code below which, as a rule, my X is not invertible matrix because X is not square and therefore not invertible. But I dont undestand: numpy makes the method ".I" in this case!! Does numpy have any algorithm to calculate a X.I matrix that simulates an inversion? Note that in the final result we get the same result: tetas_strange_equation = tetas_Normal_Equation
      The code is:
      import numpy as np
      X=np.matrix([
      [1,35,70,0],
      [1,15,50,0],
      [1,42,80,0],
      [1,25,70,1],
      [1,28,90,1],
      [1,12,65,0],
      [1,34,72,0]])
      y=np.matrix([90, 35, 98, 70, 62, 32,68]).T
      # Strange equation
      tetas_strange_equation=X.I@y
      print(tetas)
      # Normal equation
      tetas_Normal_Equation=(X.T@X).I@X.T@y
      print(tetas_Normal_Equation)
      OUTPUT:
      [[21.77437371]
      [ 2.47318883]
      [-0.37736477]
      [ 8.8753038 ]]
      [[21.77437371]
      [ 2.47318883]
      [-0.37736477]
      [ 8.8753038 ]]