The fresnel integrals solved using contour integration

Поділитися
Вставка
  • Опубліковано 6 лис 2024

КОМЕНТАРІ • 46

  • @CM63_France
    @CM63_France 6 місяців тому +16

    Hi,
    "ok, cool" : 2:42 , 4:15 , 6:26 , 7:52 , 11:27 , 12:18 ,
    "terribly sorry about that" : 8:53 , 9:16 , 11:09 , 12:52 .

    • @Dedicate25
      @Dedicate25 5 місяців тому +2

      This is one of the comments of all time

    • @DaMonster
      @DaMonster 4 місяці тому +1

      Very helpful, thank you

  • @HeyKevinYT
    @HeyKevinYT 6 місяців тому +9

    I learned these integrals last week in my complex analysis course! My professor did the general case of the integrals from 0 to ∞ of cos ax² dx (call it I₁) and of sin ax² dx (call it I₂), with a > 0. This means I₁ + iI₂ = integral from 0 to ∞ of exp(iax²) dx (call it I₃). We then set up the same contour and path parameterizations that you did and obtained the expression for I₃, whose real part and imaginary part are equal = I₁ = I₂ = √2/4 * √(π/a), and the case of a = 1 gives the solution as in the video. A slightly different approach for the definition of f and still very elegant!

  • @edmundwoolliams1240
    @edmundwoolliams1240 6 місяців тому +3

    This was how I first learnt how to solve them! 😊

  • @bandishrupnath3721
    @bandishrupnath3721 6 місяців тому +4

    wonderful teaching sir

    • @maths_505
      @maths_505  6 місяців тому +2

      Thank you my friend

  • @jorgelovaco7527
    @jorgelovaco7527 6 місяців тому +1

    Beautiful beyond words 😍

  • @bennettkinder5654
    @bennettkinder5654 Місяць тому

    This video made contour integrals click for me!

    • @maths_505
      @maths_505  Місяць тому

      @@bennettkinder5654 glad it helped. There are lots more in the contour integration playlist.

  • @الْمَذْهَبُالْحَنْبَلِيُّ-ت9ذ

    12:18 Doesn't that require the use of DCT or MCT? To be able to switch the order of the limit operation and integration? The function doesn't seem to be monotone, taking MCT out of the picture, so how would DCT work here? Or is there perhaps a different theorem that comes into play?

  • @OpenMicDropNight
    @OpenMicDropNight 6 місяців тому +4

    What app are you using? It looks super smooth.

    • @axeitor
      @axeitor 6 місяців тому +1

      I think its the samsung notes app

  • @redroach401
    @redroach401 2 місяці тому

    How do you know when to sue a specific contour because some have semi-circle or box or pizzaslice or keyhole, etc. and I don't understand when to use which

    • @maths_505
      @maths_505  2 місяці тому

      Experience is a great teacher

  • @RocketsNRovers
    @RocketsNRovers 6 місяців тому

    i loved it

  • @Unidentifying
    @Unidentifying 6 місяців тому +2

    what kind of master/specialization are you doing bro?

    • @maths_505
      @maths_505  6 місяців тому

      Astrophysics bro

    • @Unidentifying
      @Unidentifying 6 місяців тому +2

      @@maths_505 wow !! awesome, didn't expect that. Thought you would do pure math. I'm doing a very similar study, seeing your grasp you will do fantastic I'm sure.

  • @zab_
    @zab_ 6 місяців тому

    could you do it using Imaginary and Real parts of (e^i(x^2))

  • @usmansaleem3173
    @usmansaleem3173 6 місяців тому

    Nice ❤
    Which whiteboard application you are using

    • @maths_505
      @maths_505  6 місяців тому +1

      Samsung notes

    • @usmansaleem3173
      @usmansaleem3173 6 місяців тому

      @@maths_505 thanks for your help. Kindly rate the tablet good for teaching Wacom One
      Remarkable 2
      Apple ipad pro
      Etc

  • @sciencelover-c2j
    @sciencelover-c2j 6 місяців тому

    What is the same Integral but without limits ?? Can I use the UV method to solve it?

    • @marioangelov113
      @marioangelov113 6 місяців тому +4

      Both integrals have no elementary solution when they are indefinite.

    • @sciencelover-c2j
      @sciencelover-c2j 6 місяців тому +1

      @marioangelov113 so ,can I solve it by udv ??

    • @marioangelov113
      @marioangelov113 6 місяців тому +2

      @@sciencelover-c2j No, they can be evaluated only as definite integrals (unless we use special functions). The classical methods of solving indefinite integrals (integration by parts, substitutions, etc.) do not work. Essentially this means that there are no elementary functions that we know, whose derivative is cos(x²) or sin(x²).

    • @sciencelover-c2j
      @sciencelover-c2j 6 місяців тому

      @marioangelov113 That's mean when they come as indefinite (open integral ,no limits) ,we can't make integration for them?

    • @marioangelov113
      @marioangelov113 6 місяців тому

      @@sciencelover-c2j yes

  • @petterituovinem8412
    @petterituovinem8412 6 місяців тому +1

    first

  • @phylI
    @phylI 6 місяців тому

    just had to solve them in my homework, solved using double angle formula🙃

    • @nott_applicable
      @nott_applicable 6 місяців тому

      How would that work? Im a bit rusty but isnt the double angle formula for sin(A+B), not sin(A²)?

    • @phylI
      @phylI 6 місяців тому

      @@nott_applicable cos2A = 1 - 2sin^2(A)

    • @nott_applicable
      @nott_applicable 6 місяців тому

      ​@@phylIsin²(x) is something different than sin(x²)

    • @phylI
      @phylI 6 місяців тому

      @@nott_applicable oh youre right, saw it wrong😅
      I had sin^2(A)