You Can Solve This USAMO Problem | Math Olympiad Number Theory | How to Start Thinking|USAMO 2024 P1

Поділитися
Вставка
  • Опубліковано 28 гру 2024

КОМЕНТАРІ •

  • @prasoonshrivastava9086
    @prasoonshrivastava9086 4 дні тому +1

    12:30 there will exist a prime p>n then p does not divide n! suppose p lies b/w divisors Dk and Dk+1, this prime p will make a gap b/w these divisors of more than 1
    16:00 inequality can be written as 3=< d+(d-1)k and for k>0 it is true for d>=2 and for k=0 true for d>=3 hence works for small d

  • @Expirationnear
    @Expirationnear 5 днів тому +2

    Which years usamo problem is this

    • @Cheenta
      @Cheenta  5 днів тому

      USAMO 2024 Problem 1

  • @jortor2932
    @jortor2932 5 днів тому +2

    3:20 what did u said here

    • @Cheenta
      @Cheenta  5 днів тому

      For number theory, combinatorics, algebra, diagram IS the example

    • @Pr0xy0171
      @Pr0xy0171 5 днів тому

      For number theory , combinatories, Algebra this ''sort of'' stuff, diagram means example...

  • @amaldev5970
    @amaldev5970 5 днів тому +1

    15:56
    for k=0, id d>=3 works

    • @Cheenta
      @Cheenta  5 днів тому

      What if k is not 0?

  • @experimentingalgorithm1546
    @experimentingalgorithm1546 5 днів тому +2

    Hey Cheenta, I am in my college now, but I wanna learn Olympiad Mathematics after my graduation. Will I be eligible in your program?

    • @Cheenta
      @Cheenta  5 днів тому +2

      Sure. However as a college student you may want to learn more exciting stuff related to research. You may join the college math program or research program. Additionally you may also attend olympiad classes for fun.

  • @IzazAhmed1232
    @IzazAhmed1232 5 днів тому +1

    Sir i want to learn geometry from you how i can i did

    • @Cheenta
      @Cheenta  5 днів тому

      You may check cheenta.com for program related information.

  • @mv84-k5p
    @mv84-k5p 2 дні тому

    another solution:by Bernards postulate we can say that there is a prime number between n and 2n,now if we find another pair of consecutive integers greater than n we will be done,so case 1)n is odd,we can take (n-1)sq,n-2(n),now you might be wondering how does n-1 sq work,n-1 sq =2* n-1/2 *n-1,now you can see why,for j even you can take n-2 whole square with similar reasoning and (n-3)(n-1),hopefully my solutions is correct,this problem becomes so simple with Bernards postulate

    • @mv84-k5p
      @mv84-k5p 2 дні тому

      Instead of 2n-2 I just wrote 2n,it doesn't make any differenc3

  • @suganselva6209
    @suganselva6209 4 дні тому

    sir i am a dropper , i feel very bad to have missed the olypiads are there anything i am eligible for