Least squares approximation | Linear Algebra | Khan Academy

Поділитися
Вставка
  • Опубліковано 1 лют 2025

КОМЕНТАРІ • 100

  • @sarabenavidez3863
    @sarabenavidez3863 5 років тому +247

    "Some of you might already know where this is going.."
    Me: Nope

  • @aashaytambi3268
    @aashaytambi3268 3 роки тому +70

    When I get a real job, I will donate my bonus to Khan Academy. This has saved me so much time and you are so awesome.

  • @nicholascunningham6936
    @nicholascunningham6936 10 місяців тому +3

    This channel is a blessing. I've had some really bad professors and I've had some really good professors. But even the really good professor never made the concepts click with me as well as these videos do. Like, not only do I understand the math better, but just the little diagram you drew showing A's column space, and visibly showing how b is outside of A's column space yet could still be approximated using a vector v in A's column space, like idk how else to describe it but that just made it click for me.
    Edit: I guess _one_ way to describe it and how it clicked for me:
    So we use a line to approximate a bunch of data points on a graph, or plane. If these data points were in a straight line, the "approximation" would have no error. However, this is often not the case.
    Now, think about the equation y=mx+b. Let's use c instead of b to avoid confusion in the next step. So we have y=mx+c. This is the equation used to represent our line. Suppose b=y-c. Then we have mx=b, which looks a lot like Ax=b. And it is! A is just a 1x1 matrix.
    So the line is bounded by the column space of A, or m, and our variable(s) (in this case, just x) can be changed to get b. Just basic algebra: if m=3 and b=6, then x=2. But say b is a 2D vector, e.g. b=(1, 2)^T. Well now, no matter what x you use, you can't get b (unless b just happens to lie on the line). You can only get as close to b as the column space of A will allow you.
    In the diagram drawn in the video, the column space of A is a plane, so the span of A is 2. For simplicity, let's suppose A is a 3x2 matrix (a geometrical interpretation of this is that A is a 2D plane "floating" in a 3D space). b appears to be a 3D vector (so while A is only a 2D slice of the 3D space, b is a point that could be anywhere in the 3D space). So, just like before, we try to use a line bounded by the column space of A to get as close to b as possible by changing our variables (in this case, x1 and x2).
    Correct me if my understanding is wrong :)

  • @danielerusso_1589
    @danielerusso_1589 2 роки тому +14

    This lesson is fantastic! I understood the problem in only 15 minutes! You're absolutely better than my numerical analysis teacher at university, that can't properly teach an argument in two hours! Thank you!

  • @ozzyfromspace
    @ozzyfromspace 5 років тому +27

    I was doing an online machine learning course and got lost when the lecturer introduced the normal equation (which this is, with a different name). Needless to say, I'm finna binge-watch your linear algebra lectures now because I get insecure about using equations I don't understand. Thanks for the playlist, I really wanna put ML in my toolset so we're doing this!

    • @khaledsherif7056
      @khaledsherif7056 4 роки тому

      Can you please mention the name/link of the course ?

    • @mwaleed2082
      @mwaleed2082 4 роки тому

      @@khaledsherif7056 not sure which course he used for ML, but I'm studying Machine Learning by Andrew NG on Coursera. When he was teaching us normal equation as an alternative to gradient descent In Week 2 of the course, I realized I had seen this in Linear algebra but with a different name which is the title of this video.

  • @haojiang4882
    @haojiang4882 7 років тому +67

    Comes in handy while studying machine learning.

    • @KeystoneScience
      @KeystoneScience 7 років тому +4

      yes, same

    • @mwaleed2082
      @mwaleed2082 4 роки тому +4

      Very true. When I was studying ML, "normal equation", I really thought that I had seen it somewhere. Then I realized I studied it in Lin. algb.

  • @aidawall8
    @aidawall8 12 років тому +32

    You are like a billion times better than my professor... and my professor isn't even bad. On the contrary he's my favorite! You're just even better at explaining things.
    Plus it's impossible for me to lose focus with the pretty colors and your beautiful handwriting. lol
    I have my Linear Algebra final tomorrow (technically today) and I owe the A that I'm sure to get to you and all your helpful videos!

    • @potatojam6519
      @potatojam6519 5 років тому +10

      7 years later... did you get an A? :)

    • @HustleHeaven247
      @HustleHeaven247 Рік тому

      11 years later did you get that A?

    • @arontinkl8782
      @arontinkl8782 2 місяці тому

      12 years later did you get that A?

  • @samirrimas
    @samirrimas 11 років тому +23

    Very useful man you are doing an amazing job this literally saved me hours of searching and reading can't thank you enough :)

  • @fireheart9715
    @fireheart9715 Рік тому +1

    This was incredible, I started this video off being so confused about the least squares, and I just get it entirely now! Thank you so much :)

  • @陈明年
    @陈明年 3 роки тому +1

    Best linear algebra playlist.

  • @dakota5569
    @dakota5569 3 місяці тому

    This is a good preface before machine learning. The star notation is always the most optimal/best, and you can gradient descent to minimize the square error

  • @jibran6635
    @jibran6635 4 роки тому +1

    This is super useful in solving assignments.THanks khan academy.

  • @n07kiran43
    @n07kiran43 4 місяці тому +2

    Indebted to Khan academy forever!

  • @tanvirwaseer16
    @tanvirwaseer16 Місяць тому

    The big picture by stating one application where this can be used
    Image you have a set of data points and you are asked to predict a particular value based on x or y where one of them is given.
    Those points when you plot them via a scatter plot and draw an imaginary line connecting all the points you will notice that the plot is not linear but is quadratic.
    During that time you will think of quadratic equation to find a solution to your estimation problem i.e. y = ax^2 + bx + c
    Now to find the co-efficients i.e. a, b and c of the equation one of the ways you can use is least squares approximation method that can help you find the values.
    I do recall Sal got into vector spaces and few more advance linear algebra things which might not sound easy at first. But don't get boggled down into the calculation part computers can do this easily nowadays.
    I used to have this bad habit of memorizing formulas and ways of solving problem without actually intuiting where and how this is actually used. Focusing on the applications gives a different level of motivation.

  • @johnfykhikc
    @johnfykhikc 7 років тому

    Best approach to the problem. No gradient, no multivariable calculus. you're master!

  • @mattralston4969
    @mattralston4969 5 років тому +2

    Thank you Salman Khan. I appreciate the opportunity to relearn the method here. You can never hear this stuff enough times.

  • @ottoomen5076
    @ottoomen5076 6 років тому +3

    Excellent explanation of a valuable technique.

  • @Jshizzle2
    @Jshizzle2 5 років тому +1

    Helpful exploration of least square properties

  • @seprage
    @seprage 9 років тому +66

    It would be great having links when says "I explained (whatever) in a different video" to access that explanation. In this case I wanted to know why C(A)transpose=N(Atranspose).
    Thanks¡

    • @Daski69
      @Daski69 9 років тому

      +Sergio Prada same thing here

    • @196phani
      @196phani 6 років тому +10

      www.khanacademy.org/math/linear-algebra/alternate-bases/othogonal-complements/v/linear-algebra-orthogonal-complements go through this to understand how C(A)transpose=N(Atranspose).

    • @MrVishyG
      @MrVishyG 6 років тому

      +1

    • @gulshanjangid3470
      @gulshanjangid3470 6 років тому +5

      consider any vector x perpendicular to Column space of A i.e. belongs to A _|_.
      Then dot product of A and x is 0, i.e. (A^T)(x) = 0
      Now consider b = A^T, so clearly above equation is bx = 0, i.e. x lies in null space of b
      Thus x lies in null space of A^T
      also as in the first line I said x belongs to A perpendicular ,
      thus C(A _|_) = null(A^T)

  • @rajj1567
    @rajj1567 12 років тому +1

    Your videos are just great !!! The concepts with geometrical examples make very good sense !!! Thanks a lot

  • @Awhobiwom
    @Awhobiwom 5 років тому

    Thank you so much. You just simplified long boring hours of confusing lecture

  • @adamhuang2421
    @adamhuang2421 12 років тому +1

    very helpful! Thanks a lot! you are doing great things! I also listened to your other videos, all very wonderful!

  • @rodrigo100kk
    @rodrigo100kk 5 місяців тому

    Awesome explanation! Keep up the good work!

  • @budharpey
    @budharpey 12 років тому +1

    Very useful! In my lecture slides I had this term Hx=z for the same problem and I couldn't make sense of how we could get to this as the best solution: x = (Ht*H)^-1 * Ht * z.
    Now I understand:-)

  • @batmendbatbaatar4290
    @batmendbatbaatar4290 4 роки тому

    This is surprisingly easy

  • @elmiramb
    @elmiramb 14 років тому

    Thanks a lot, very comprehensive ! great job!

  • @xesan555
    @xesan555 7 років тому

    Thanks so much Khan...wonderful explanation in two videos that explains everything...great. You are wonderful

  • @lancelofjohn6995
    @lancelofjohn6995 3 роки тому

    It seems I have seen the best video!

  • @rob6129
    @rob6129 5 років тому

    Nice derivation of the normal equation

  • @tranzconceptual
    @tranzconceptual 10 років тому +30

    god dang it I knew I should have chosen other bachelor thesis..

  • @adithyavarma758
    @adithyavarma758 Рік тому

    thank you very much sir

  • @kalvinsackey1804
    @kalvinsackey1804 Рік тому

    can we please get a video for the maximum likelihood estimation

  • @Matterhorn1125
    @Matterhorn1125 13 років тому +1

    can you teach me cubic expressions and cubic equations :)
    eg. solve the equation x(3X3X3) - 2x(2X2) - x + 2 = 0
    by using the factor theorem formula :)

  • @EWang-yn5sy
    @EWang-yn5sy 6 років тому

    This guy is good...........

  • @kartarsingh7776
    @kartarsingh7776 6 років тому

    Super clarity......

  • @roy5180
    @roy5180 3 роки тому

    thank you sir

  • @mustafasabeeh8893
    @mustafasabeeh8893 4 роки тому

    thanks

  • @arico94
    @arico94 6 років тому

    Should have used n instead of k its usually mxn in R^n

  • @rbfreitas
    @rbfreitas 14 років тому

    Good video!!!! And nice work! Good luck with the KhanAcademy :)

  • @BlackfireGippal
    @BlackfireGippal 12 років тому

    I wish to know how to solve this: x has values of : -2 0 1 2 3 and y : 17 5 2 1 2 and i'm asked to use the least squares method, but i've been absent and i don't know exactly what my teacher ment by that or what that method consists of. Can anyone help me solve this ?

  • @박주은-f4x
    @박주은-f4x 2 роки тому

    당신은 나의 구원자입니다. 정말 명쾌한 강의입니다. 감사합니다!! 👍👍👍

  • @fascist27
    @fascist27 15 років тому

    really helpful

  • @MrZulfiqar37
    @MrZulfiqar37 10 років тому +3

    I have a question..
    does least sequare approximation has always solution..

    • @CR-iz1od
      @CR-iz1od 9 років тому +2

      +Zulfiqar Ali not if you don't solve it.

    • @Daski69
      @Daski69 9 років тому +1

      +Conor Raypholtz it still has a universally reasonable solution

    • @spindash64
      @spindash64 8 років тому +2

      I'm pretty sure that is the idea of least squares: to provide a close answer when you can't give an exact one

    • @shredding121
      @shredding121 7 років тому

      it does always have one - if Ax = b has a solution than it's a vector on A and if not it's the projection on A.

    • @natebush26
      @natebush26 7 років тому

      There is always a solution to the least squares problem. Why? x* is in colspace(A) by definition of being a projection from b into C(A) so there must be a set of weights that yield a linear combination of a that equal b.

  • @MistrVahag
    @MistrVahag 13 років тому

    Excelent video.
    Thanks much :))))))))
    Vahag

  • @winnies1001
    @winnies1001 7 років тому

    how did you know that it was a projection to the Col(A) and not anything else like the Range(A)?

    • @lucasm4299
      @lucasm4299 6 років тому

      Winnie Shi
      Col(A) already is the range of A.

  • @ArafatAmin
    @ArafatAmin 12 років тому

    what happens when AT*A is singular. How do we solve for the least square solution?

  • @trejkaz
    @trejkaz 2 роки тому

    I tried using this trick for the problem I'm facing, but it turns out that when I multiply AT by A, I get a matrix which isn't invertible, so I still can't solve it. LOL
    This _still_ seems odd to me, because even if some element in the input matrix A was contributing 0 to the result b, it should _still_ be possible to get a point as close as possible to the result.

  • @utte12
    @utte12 12 років тому

    nice vid, but why did you take the length squared? i understand that the length of the vector would be sqrt(b1^2 + b2^2...bn^2) but why did you square even that?

    • @lucasm4299
      @lucasm4299 6 років тому

      utte12
      Because it’s easier to work with minimizing the sum of squares than minimizing the square root of a sum of squares. That’s my guess

  • @luffy08dn
    @luffy08dn 13 років тому

    thaks

  • @SanwaOfficial
    @SanwaOfficial 5 років тому

    I have one question, whether the LSS always consistent? if yes, how can I prove it? please answer

    • @mwaleed2082
      @mwaleed2082 4 роки тому

      Hi, not sure if you're still looking for the answer, but could you please describe what do you mean by consistent?

    • @biswa_il407
      @biswa_il407 Рік тому

      It means that wheather we can always find least square solution of a system.

  • @zhiqiguo803
    @zhiqiguo803 10 років тому +1

    love this guy

  • @91leonetammie
    @91leonetammie 4 роки тому +1

    This is the first Khan Academy video I watch and don't understand...

    • @mwaleed2082
      @mwaleed2082 4 роки тому

      For that you need to study orthogonal components, and the concept of what spanning sets are which further derive the concept of column space, null space, etc.

  • @shinigummyl1586
    @shinigummyl1586 6 років тому +25

    2018? Im alone :(

  • @Ben.N
    @Ben.N 3 роки тому +1

    Big brajn

  • @kavishdoshi2408
    @kavishdoshi2408 8 років тому

    accha hai

  • @nilsclaessens5203
    @nilsclaessens5203 Рік тому

  • @priestofrhythm
    @priestofrhythm 13 років тому +1

    I am the 60th guy liking it !! :P :D
    Great vid, thank you. :)

  • @aysegocer3308
    @aysegocer3308 2 роки тому +1

    🤩

  • @hugoderuyver
    @hugoderuyver 4 роки тому

    ICAM ! ICAM ! .... .. ...... !

  • @dion9795
    @dion9795 3 роки тому

    bro just do an example lol

  • @jihyepark9139
    @jihyepark9139 4 роки тому

    Sometimes I can't see what he's writing.

  • @spechtbert
    @spechtbert 12 років тому

    n1

  • @山田林-f5b
    @山田林-f5b 2 роки тому

    gorgeous

  • @fascist27
    @fascist27 15 років тому

    Respond to this video...