How to apply Fourier transforms to solve differential equations

Поділитися
Вставка
  • Опубліковано 20 гру 2024

КОМЕНТАРІ •

  • @Isabellaa-ms5dk
    @Isabellaa-ms5dk 2 роки тому +1

    Thank you so so much for these videos... You're the best teacher!!! So clear and easy to follow

  • @Dadutzaa
    @Dadutzaa 4 роки тому +4

    2020 and still the only relevant video that I could find on this topic

  • @Great_PatBingsoo
    @Great_PatBingsoo 10 років тому +39

    I've gotta say. Your lessons are excellent. Extremely clear, accurate, and helpful. Thank you for taking the time to teach to make up for the lack of teaching ability on many professors' part.

    • @azariahkeith5189
      @azariahkeith5189 3 роки тому

      a tip : watch series on flixzone. Been using them for watching all kinds of movies recently.

    • @jaxxkameron8181
      @jaxxkameron8181 3 роки тому

      @Azariah Keith Yup, been watching on flixzone for months myself :D

  • @evansmnjoki4331
    @evansmnjoki4331 4 роки тому +3

    Your videos are amazing. For months I've been trying to understand Fourier Transform method in vain. But today it sunk as I watched this video. It is helpful as tomorrow I have a PDE exam.

  • @ozzyfromspace
    @ozzyfromspace 4 роки тому +2

    I recently saw in another UA-camr’s video (A professor called Steve Brunton at the University of Washington) how you can derive the Fourier transform by taking the Fourier series of a function with compact support and simply extending the domain to positive and negative infinity. Once that made sense, this video just clicked magically for me. I wanted to solve for the electromagnetic response of a wire due to an external E field (you assume the current density equals the material conductivity times the external E field) and solve the hyperbolic pdes of Maxwells equations. I knew you have to use Fourier series because they have a tendency of reducing pdes to odes and algebraic systems of equations, but I couldn’t quite see how. Your video example was the perfect demonstration of how useful the approach can be. Many thanks Professor Tisdell, you’re doing the Lords work! 🙌🏽☺️ Best wished with everything.

  • @dragonspikes8918
    @dragonspikes8918 9 років тому +6

    Wow, I have been having the hardest time figuring this stuff out and this video really brought it all into focus. Thank you for making this video, and I look forward to watching other videos of yours for future assistance

  • @alexabbati1270
    @alexabbati1270 10 років тому +2

    Hey Chris,
    Thanks a lot for your video, it is very informative. I just finished a graduate introductory course in applied mathematics, and one of the topics was Fourier transforms, but I didn't have enough time to solve any actual PDE's using them, so thank you for sharing this knowledge!
    Alex

  • @huehue5286
    @huehue5286 6 років тому

    You're the best teacher I never had.

  • @shiyuzhou709
    @shiyuzhou709 4 роки тому +2

    Thank you professor! This is quite clear and very easy to follow!

  • @71ChuckNorris
    @71ChuckNorris 4 роки тому

    hello. i come from the future. i had a similar problem, but solving the klein-gordon equation. your solution is excellent and helped me understand wth im doing. this is a 1am comment. thanks again

  • @syedzainmehmoodbukhari8523
    @syedzainmehmoodbukhari8523 5 років тому

    Thanku for such excellent explanation. Appreciation from Quaid-i-Azam University Pakistan !!!

  • @mohandoshi153
    @mohandoshi153 7 років тому

    Absolutely awesome teaching Dr. Chris Tisdell. I just love your teaching method. Thanks a lot.

  • @aneet84
    @aneet84 7 років тому

    Awesome video! Thank you, Professor Tisdell. I found this useful to refresh my Fourier Transform knowledge, in pursuit of the Inverse scattering transform for the KdV.

  • @darlingtonetaje2973
    @darlingtonetaje2973 4 роки тому

    Dr. Chris...thank you for this excellent video. you are a life saver

  • @Account-fi1cu
    @Account-fi1cu 5 років тому

    Thank you, Im learning this material by myself, and the textbook skips lots of steps, and is very hard to follow.
    You make it so much easier : )

  • @TotallyNotEvil910
    @TotallyNotEvil910 5 років тому

    THANK YOU, it's simply absurd how hard it was for me to find a simple, objective, didatic tutorial on Fourier Transform as applied to Differential Eqs.

  • @oykamix8135
    @oykamix8135 4 роки тому

    Thanks for your effort. It is helping me alot especially these hard days with online education.

  • @blahblahblahblahblah9920
    @blahblahblahblahblah9920 8 років тому +4

    Hi, can you prove existence and smoothness of the Navier-Stokes solutions on R^3 for me please? Thank you!

    • @DrChrisTisdell
      @DrChrisTisdell  8 років тому +7

      +Blahblahblahblahblah Now that really is a million dollar question.

    • @ozzyfromspace
      @ozzyfromspace 4 роки тому +1

      But really though, could you do it for us please? That would be awesome.

  • @gamefan500
    @gamefan500 3 роки тому

    Life saver! Thank you very much sir.

  • @mashrurrahman3741
    @mashrurrahman3741 4 роки тому +1

    this guy's a legend

  • @abdurrahmankhaled9212
    @abdurrahmankhaled9212 5 років тому

    You are so smart and helpful , thanks so much.

  • @AJ-et3vf
    @AJ-et3vf 2 роки тому

    Awesome video! Thank you!

  • @DrChrisTisdell
    @DrChrisTisdell  11 років тому +4

    My pleasure!

  • @ip3561
    @ip3561 8 років тому +2

    Can you do an inhomogeneous problem?

  • @sparksfly44
    @sparksfly44 10 років тому

    Thank you! Helped me a lot with my assignment!

  • @garyzhang5099
    @garyzhang5099 5 років тому

    getting confused at 4:39 , my book said that ux=-iwU(w,t) and uxx=(-iw)^2U(w,t). however, by differential by part, I got the same answer as you did. But, I find out that use the formula in the book has no problem at all. So, I don't know why.

  • @MultiConism
    @MultiConism 8 років тому

    When you say that we assume w is positive (10:30) wouldn't it still work if w is negative? Does w just have to be real?

  • @DrChrisTisdell
    @DrChrisTisdell  11 років тому +1

    Yes, it is theoretically possible to do this. You must really like transform methods! :-)

  • @wise_math
    @wise_math 3 роки тому

    What if we have Neumann boundary condition?

  • @Peter_1986
    @Peter_1986 5 років тому

    My math book on PDEs is terrible at explaining things - it's "one of those books" that goes on about proofs and formal theorems in a stiff manner all the time and almost never gives any intuitive example problems.
    These videos are a million times easier to understand.

  • @mhlakola
    @mhlakola 11 років тому

    Thank you very much Dr Chris.

  • @ThaoNguyen-dd5ef
    @ThaoNguyen-dd5ef 10 років тому +1

    wait at 13:50 it is u-hat(w,0)=A(w) right ?

  • @harperm2528
    @harperm2528 4 роки тому

    Thank you so much!!!!!!!!! It's really helpful!!!!!!!!!

  • @user-ts1nl4ly2u
    @user-ts1nl4ly2u 6 років тому

    Dr chris: your lecture is excellent .
    But if don't mine can interpret in physical manner,that mean what we are transforming from one to another.
    THANK YOU

  • @Qq-lp5xg
    @Qq-lp5xg 5 років тому

    Can you only use the Fourier transform on PDes when they are on an infinite spatial domain?

  • @giovannidigiannatale7794
    @giovannidigiannatale7794 9 років тому

    Is it possible include the boudary conditions with the Fourier transform? Because you showed that it is possible using a Fourier's serie tecnique..

  • @amirrezaavani2234
    @amirrezaavani2234 7 років тому

    Thank you so much Dr, really helpful and useful​

  • @raniaaltounisi3237
    @raniaaltounisi3237 5 років тому

    Amazing Doctor...

  • @OmahcronOmni
    @OmahcronOmni 11 років тому

    Thank you Chris love your videos.

  • @mafumix
    @mafumix 8 років тому

    Please can you tell me ....This type of example equation-P.D. what it means (practical application) in physics?

  • @hawasaylac2750
    @hawasaylac2750 7 років тому

    Hi, thanks so much for posting these videos. Have you got any where the Fourier transform is applied to ordinary differential equations? Would love to see some examples on those if you could ? :) thanks

  • @chandnibhudia624
    @chandnibhudia624 10 років тому

    thank you!!! but where have you used the boundary conditions u going to 0 as mod(x) goes to infinity??? please reply, ive an exam in a week!!!

  • @kaykrishna
    @kaykrishna 11 років тому

    Thank you so much Dr Chris.You have been a great help for revising the course. May I ask you as to how do we apply Fourier Transform do solve the 4th order PDE? U''''(x,t)= Utt(x,t)

  • @tehArcher
    @tehArcher 11 років тому

    When solving the ODE in Fourier space, would it be possible to solve that with another laplace/fourier transform?

  • @Captain_Rhodes
    @Captain_Rhodes 9 років тому

    do you have PDFs of your lecture slides? They are often quite good and I cant be bothered to copy them by hand!

  • @lijie2511
    @lijie2511 10 років тому +1

    I am lost infinitely expressing the solution of a differential equation (with epsilon) using Fourier series.

  • @grantleishman6900
    @grantleishman6900 7 років тому

    Hi Chris, great videos! Quick question, when would you use the sin or cosine transforms instead of the complex transform?

  • @uschan5227
    @uschan5227 3 роки тому

    Perfect and Thank you

  • @aeroscience9834
    @aeroscience9834 8 років тому

    What about if u sub t (x,0) is not zero?

  • @youmah25
    @youmah25 10 років тому

    very informative thank you

  • @akshayan1340
    @akshayan1340 9 років тому

    How can you rewrite sin(wt) as a power of e?

  • @SahMai
    @SahMai 9 років тому +1

    Excellent thank you!

  • @Peter_1986
    @Peter_1986 5 років тому +3

    15:29 sounds like "I'll never find my solution", hah.

  • @Huseby90
    @Huseby90 10 років тому

    love your vids!

  • @Peter_1986
    @Peter_1986 5 років тому

    1:54
    "here, or here...or somewhere else".
    lol, seems like a very adventuous factor. =D

  • @JoeSmith69
    @JoeSmith69 9 років тому +1

    Thank you so much :)

  • @عصمتعقیقی
    @عصمتعقیقی 6 років тому

    very good

  • @clearthinking5441
    @clearthinking5441 5 років тому

    Thank you.

  • @mr_salem_for_math
    @mr_salem_for_math 4 роки тому

    solve poiseuille equation by fourier transform?!!

  • @TM-Yan
    @TM-Yan 6 років тому

    thank you!

  •  5 років тому

    came for the fourier tansform - stayed for the ASMR

  • @ahmedsalman17
    @ahmedsalman17 9 років тому

    thanks alot

  • @tehArcher
    @tehArcher 11 років тому

    yea!

  • @Ahmedleo27
    @Ahmedleo27 5 років тому

    what even is w. He just writes it and never explains