Heat equation + Fourier series + separation of variables

Поділитися
Вставка
  • Опубліковано 20 гру 2024

КОМЕНТАРІ • 73

  • @nyahothloangbipean92
    @nyahothloangbipean92 5 років тому +3

    This is by far the best professor I have come across on UA-cam. Going through all the steps and explaining every detail thoroughly. Wow! Just amazing. All your videos are amazing sir. You are helping a million of students out here👏🏾

  • @thomascutler1098
    @thomascutler1098 8 років тому +62

    My right ear is gunna nail this exam

  • @DrChrisTisdell
    @DrChrisTisdell  12 років тому +4

    My pleasure and hope you are finding the ebook of some use also.

  • @DrChrisTisdell
    @DrChrisTisdell  12 років тому +1

    Our f is originally defined on the interval [0,\pi]. Thus we can extend f as an even or odd function on [-\pi,\pi] as we wish.

  • @holiholi2004
    @holiholi2004 8 років тому

    I appreciate that I put subtitles since I do not speak English. Thank you very much for the explanation and for the encouragement. Greetings from Peru

  • @YKdunker
    @YKdunker 10 років тому +4

    awesome! like the pace you went with, slow and elaborate!

  • @davidalormene4150
    @davidalormene4150 9 років тому

    Dr. Thanks for your videos, it is helping me seriously in this semester. This is the first time our outfit is taking this course and we are the first group. Your video is giving us more explanations. Good work done.

  • @liquidstl
    @liquidstl 12 років тому

    Yup, we do! I'm taking heat transfer this semester, and it was derived in class. We also had a few homework problems related to it.

  • @yimkumozukum4250
    @yimkumozukum4250 10 років тому +10

    that laugh at 25:37 hilarious!

  • @DrChrisTisdell
    @DrChrisTisdell  12 років тому

    Great to hear! Hope you enjoy my new ebook as well - the link is in the description.

  • @JJackJi9212
    @JJackJi9212 12 років тому

    Thank you so much, this video has saved my life!

  • @smudgeyandarf
    @smudgeyandarf 8 років тому

    Why, at 22:30, is it not F(x)=Acos(px)+Bisin(px)? Why doesn't he have the i?

    • @abderrahmaneden3890
      @abderrahmaneden3890 7 років тому

      in ODE if a*F "a constant" is a solution then F is a solution too in your case "a=i" and we need a real solution not a complex one

  • @DrChrisTisdell
    @DrChrisTisdell  12 років тому +1

    Hi - thank you very much. If you enjoyed this lesson then please consider my new ebook, which is freely available - the ilnk is in the description.

  • @grilledsalmon17
    @grilledsalmon17 12 років тому

    you sir, are a mathemagician!
    Thank you so much!

  • @Thesoccerdood
    @Thesoccerdood 9 років тому +5

    This was so helpful.. thank you so much

  • @ayeshkhan4450
    @ayeshkhan4450 3 роки тому

    Hello sir. Will you solve a PDE if I send you?

  • @rootedwithsami
    @rootedwithsami 12 років тому

    For 38:22 isn't the integral doubled only if f(X) is even as well? How do we know f(X) is doubled

  • @thomascutler1098
    @thomascutler1098 8 років тому

    But on a serious note can someone tell me if we always have a cosine Fourier series when we have Neumann initial conditions and always have a sine Fourier series when we have Dirichlet initial conditions? or did it just kind of work out that way this time?

  • @tepteb8920
    @tepteb8920 6 років тому

    When Landa is 0 (at video time=15:00) so A is arbitrary (not B) and B should be 0 (not A). Am i right?

  • @Miscmanismiscing
    @Miscmanismiscing 12 років тому

    Why are n = -1, -2, -3, etc not solutions as well? They would still satisfy -n^20. Another great video as well.

    • @haz6942
      @haz6942 5 років тому

      then it would be linearly dependent

  • @a7x52
    @a7x52 9 років тому +1

    How does the radius of the cross section affect the diffusion?

    • @DrChrisTisdell
      @DrChrisTisdell  9 років тому +1

      That is a good question. We assume the bar is thin, so the cross-sectional area is small and has no effect.

  • @muhammadseyab9032
    @muhammadseyab9032 7 років тому

    very very nice lecture you cleared everything boss

  • @vinaykulkarnivk
    @vinaykulkarnivk 12 років тому

    awesome video helped me a lot in PDE thank you so much :) ...

  • @precinsalvan5793
    @precinsalvan5793 8 років тому

    Can we get a soft copy of that answer sheet of yours?? it would be easier for us to understand instead of rewinding and forwarding.

  • @reemalraddadi9841
    @reemalraddadi9841 10 років тому

    Is there way to solve nonlinear heat equation by separation of varibles ? I am trying to do that. I know this case is called fast diffusion equation.

  • @yas24601
    @yas24601 11 років тому

    I've been viewing your work sir, and you have helped me a lot! much thanks for the book!!

    • @DrChrisTisdell
      @DrChrisTisdell  11 років тому

      My pleasure. Glad you are enjoying the book.

  • @MyThundermuffin
    @MyThundermuffin 8 років тому

    Dr Tisdell, I love you !

  • @stoneway2455
    @stoneway2455 7 років тому

    your accent is a little easier to understand than my prof. Thank you

  • @anjieh5903
    @anjieh5903 8 років тому

    Thank you, Dr. Tisdell!

  • @nrehm092
    @nrehm092 9 років тому

    thanks, its awesome to have this available

  • @MrBikerboy77
    @MrBikerboy77 11 років тому

    Hello Dr. I have a question regarding the heat equation when it is somewhat different than the normal kUxx = Ut, my question is how would you do the separation of variables if the equation is kUxx -hu = Ut or Uxx-3u=Ut. Thanks and your videos are very helpful.

  • @DrChrisTisdell
    @DrChrisTisdell  12 років тому

    Thanks for the feedback.

  • @Arkman1510
    @Arkman1510 2 роки тому

    Thanks for the wonderfull class!

  • @rahulroshan482
    @rahulroshan482 8 років тому

    thank u sir. u made it too easy to understand

  • @mauro8723
    @mauro8723 10 років тому +4

    I don't understand because my English isn't good. But this video is intersting.

  • @robinburger769
    @robinburger769 9 років тому

    whenever an aussie speaks, i cant help but trust in what he's saying lol. Good video. Ive found that the only tricky part with the H.E. is to not make a mistake with the integral when solving An

  • @MatrixOfDynamism
    @MatrixOfDynamism 12 років тому

    Do mechanical engineers learn about heat equation?

  • @trendycareerssa2081
    @trendycareerssa2081 9 років тому

    Thank you so much sir,it now makes sense to me.

  • @mafriadimtd3035
    @mafriadimtd3035 9 років тому

    thank you so much sir...

  • @fieshy84
    @fieshy84 12 років тому

    thank you so much this video is perfect

  • @jsenumo
    @jsenumo 9 років тому

    I have this problem ut-uxx+2u=0 boundary conditions; u(0,t)=250ºC, u(L,t)=135ºC, u(x,0)=20ºC, any help about this problem or maybe where hay can find information thanks

    • @postbodzapism
      @postbodzapism 8 років тому

      ut-uxx+2u=0
      is separable, so let u=f(x)g(t).
      by differentiating we have
      f*g' - ( f'' - 2f) g = 0
      g' / g = (f''-2f) /f
      Since the left hand side depends only on t and the right hand side only on x, we can set both sides equal to a constant C.
      g' /g = C gives g = g(0) exp (Ct)

    • @postbodzapism
      @postbodzapism 8 років тому

      now consider f" = (2+C) f
      Like what Dr Tisdell did, write lambda = 2 +C =-p^2 for some real p.
      This is justified because if 2 + C

    • @postbodzapism
      @postbodzapism 8 років тому

      Here A = f(0)

    • @postbodzapism
      @postbodzapism 8 років тому

      and to find B, use the other boundary condition, so that we have f(L) = constant, then we have
      f(0) cos(pL) + B sin (pL) = f(L)
      Thus B = f(L) csc (pL) -f(0) cot (pL)
      Now substitute and you are done

  • @mirailyani
    @mirailyani 10 років тому +1

    I thank u for this video.

  • @veeganbold8684
    @veeganbold8684 7 років тому

    Can someone please explain where (r^2 - Lamda) for Lamda>0 coming from ?

    • @veeganbold8684
      @veeganbold8684 7 років тому

      at 15:35

    • @stoneway2455
      @stoneway2455 7 років тому

      the solution of the ODE of form af''+bf'+cf=0 takes the form f=e^(rx)
      where r is the 0's of the polynomial ar^2+br+c=0. in this case, it is f''-λf so r^2-λ=0, or r= +/-√λ where lambda cannot be negative or it becomes complex.

  • @sahandbagheri6641
    @sahandbagheri6641 11 років тому

    Awesome, many thanks.

  • @mustafauygun
    @mustafauygun 10 років тому +1

    yesterday?

  • @xukevin4681
    @xukevin4681 11 років тому +1

    Thanks a lot!!!

  • @ismaelehtiwesh8803
    @ismaelehtiwesh8803 10 років тому +1

    Thanks

  • @sri_6
    @sri_6 8 років тому

    How to solve the heat equation in 3d.

  • @gumsumful
    @gumsumful 8 років тому

    Worthful!!

  • @akilarajagopalan6584
    @akilarajagopalan6584 3 роки тому

    thanks man !

  • @amir.academy
    @amir.academy 7 років тому

    Thanks a lot

  • @gopeswarnamasudra8895
    @gopeswarnamasudra8895 9 років тому

    25:40 amazing

  • @stevenyi2038
    @stevenyi2038 12 років тому

    Yes they do. Almost all engineers do I think.

  • @MohamedAbdo-vw9id
    @MohamedAbdo-vw9id 11 років тому

    ThanKsssss :) :) :)

  • @karankorpal6702
    @karankorpal6702 5 років тому

    Thank god I have my right ear...