Solving Exponential Equations using Logarithms | Math Olympiad

Поділитися
Вставка
  • Опубліковано 15 лис 2024

КОМЕНТАРІ • 9

  • @mohammedsaysrashid3587
    @mohammedsaysrashid3587 4 місяці тому +1

    Thanks for sharing it was a wonderful introduction and explanation Sir 🙏....finally x=64

  • @kassuskassus6263
    @kassuskassus6263 4 місяці тому +1

    At the end, after some manipulations, we'll get: logx (log5+log3)/3=log15^2, so logx(log5+log3)/3=2(log5+log3), we simplify (log5+log3), we have logx=3*2, so logx=6, and then x=2^6=64.

  • @Rt2026-y8n
    @Rt2026-y8n 4 місяці тому +3

    64 solve in 2 min

  • @honestadministrator
    @honestadministrator 4 місяці тому +1

    Denoting
    log (z) to the base 2 as lg (z), one gets
    log ( x ^ (1/3)) to the base 2
    = 1/3 * lg (x)
    log (3) to the base ( 2 √2)
    = (1/3) lg (3)
    Again a = 2 ^ lg (a)
    Hereby
    5 ^ ( (1/3) (lg (x)) * (x^ ((1/3) lg (3))
    = (15) ^2
    2^(1/3) *(lg (5)*lg (x) + lg (x)*lg (3))
    = 15 ^ 2
    Hereby
    2 ^ ((1/3) lg ( x) lg (15)) = 15 ^ 2
    15 ^ ( lg (x) /3) = 15.^ 2
    lg (x) = 6
    x = 2 ^ 6 . = 64

  • @Quest3669
    @Quest3669 4 місяці тому +2

    Eqt well, x=64

  • @gnanadesikansenthilnathan6750
    @gnanadesikansenthilnathan6750 4 місяці тому

    Understood but why log base 2√3 ^3 ?

  • @Fjfurufjdfjd
    @Fjfurufjdfjd 4 місяці тому +1

    Χ=64

  • @RajeshKumar-wu7ox
    @RajeshKumar-wu7ox 4 місяці тому +1

    64