Euclidean Algorithm (Proof)

Поділитися
Вставка
  • Опубліковано 3 січ 2025

КОМЕНТАРІ • 126

  • @glitch3dout
    @glitch3dout 7 років тому +39

    This is the best video I could find on the internet that explains the Euclidean Algorithm so concisely and comprehensibly. Thanks a bunch!

  • @praveenanookala4457
    @praveenanookala4457 4 роки тому +13

    Ma'am, this has to be the best mathematics video on UA-cam that I've seen. So concise and immensely explanatory!!! Thank you very much! Subscribed!

  • @episkefilm8153
    @episkefilm8153 2 роки тому +1

    you just something I've used 20 minutes struggling to even begin to understand, and explained it in such a simple way in like 5 minutes. Wish more math teachers were like you

  • @fixer2508
    @fixer2508 3 роки тому

    I had been trying to decipher someone else's post on this for hours on end with no luck. Watching this video completely cleared it up for me! Thanks!

  • @octavios8081
    @octavios8081 4 роки тому +5

    The theorem proven at the end was what I was looking for, thank you!!

  • @peteryongzhong5516
    @peteryongzhong5516 6 років тому +5

    This is so well done. Why isn't this the top result when I search on google. Literally so much clearer than the textbook!!!

  • @shauryanagpal1848
    @shauryanagpal1848 4 роки тому +31

    I am actually in 10th standard and I was wondering why does the Euclid's Algorithm works ? And here is the answer thank you ma'am

  • @Andrey-ny2dv
    @Andrey-ny2dv 6 років тому +9

    I rarely leave comments but I just wanted to tell you that this video is full and brilliant.

  • @Pandafist3000
    @Pandafist3000 6 років тому +3

    Thank you for an excellent proof of the Euclidean algorithm. Exceptionally clear and thorough.

  • @tiandao1chouqin
    @tiandao1chouqin 4 роки тому +2

    Very nice and clear explanation. Thanks. Would love to see more videos from you

  • @hannahpatel7197
    @hannahpatel7197 7 років тому +7

    Thank you so much for your videos. Your explanations are so clear and concise - excellent maths brain!

  • @lucianocao8787
    @lucianocao8787 5 років тому +2

    I was struggling understanding the proof and I finally got the intuition thanks to this video.

  • @yeah5037
    @yeah5037 3 роки тому +2

    4:31 actually the theorem was proved by using the Euclidean Algorithm, while Euclidean Algorithm is proved using strong induction over the variable a here

  • @mr.shanegao
    @mr.shanegao 3 роки тому +1

    Outline:
    Algorithm (0:40​)
    Example - Find gcd of 34 and 55 (2:29​)
    Why it Works (3:58​)

  • @TamNguyen-yk9mn
    @TamNguyen-yk9mn 3 роки тому +1

    It always amaze me to think that ones upon a time someone thought of this.

    • @cubingtubing8172
      @cubingtubing8172 3 роки тому

      Yeah, same for me. Considering how much humanity has grown in the last century, we tend to think that the humans before were apes

  • @rajendramisir3530
    @rajendramisir3530 6 років тому +7

    Well organized proof. QED. Carl Gauss: Number theory is the Queen of Mathematics.

  • @gonzalochristobal
    @gonzalochristobal 5 років тому +3

    great explanation thank you! it would be great if you can find some time to make more videos like this :) but thanks a lot for the ones that you already made!

  • @mysia8437
    @mysia8437 4 роки тому +1

    I watched on 4 different channels and i understand that only you did. So thank u.

  • @naif277
    @naif277 4 роки тому +3

    Very well explained, thank you!

  • @davidemasi__
    @davidemasi__ 3 роки тому

    You made this algorithm very easy to understand, thank you very much for this great video

  • @HaGau-zk7rn
    @HaGau-zk7rn 3 місяці тому

    Great explanation and helps a lot with my study!! Thank you so much for sharing this.

  • @MarziyeFatemi-xg2ty
    @MarziyeFatemi-xg2ty Рік тому

    Such a great teacher you are! Thanks!

  • @mjjeon2292
    @mjjeon2292 7 років тому +4

    If you mention your other video while explaining, please leave a link.

  • @ashutoshniwal
    @ashutoshniwal 3 роки тому +2

    Wow you have explained it very nicely, but your proof doesn't still explains that why the common divisor would be the "greatest" and not any common divisor? How to prove that d=e?

    • @willjohnston2959
      @willjohnston2959 Рік тому

      The proof shows that the set of numbers of the form d (that divide a, b, and r) and the set of numbers of the form e (that divide a, b, and r) exactly match. These are finite sets, and they have a largest element, so those largest elements must match.

  • @peterren5409
    @peterren5409 4 роки тому +1

    At 3:44, I think the last equation should be 2 = 1*(2) + 0 instead of 2 = 2*(1) + 0

  • @davidjiang7929
    @davidjiang7929 4 роки тому +3

    Hi there, I liked your explanation here. Very concise.
    However, I am missing a piece of the puzzle. So far, we proved 1) if d is a factor a and b, then d divides r
    2) if d is a factor of b and r, then d divides a
    But how do we imply from these 2 statements that d is the gcd? i.e. we only proved that d is a factor of the 3 items, but not the greatest divisor?
    Thanks!

    • @mountainsunset816
      @mountainsunset816 4 роки тому

      Exactly, I am also confused about this.

    • @mountainsunset816
      @mountainsunset816 4 роки тому +1

      Just got it. Since d can be any factor, so it can also be the greatest common divisor.

    • @kevinmartincossiolozano8245
      @kevinmartincossiolozano8245 4 роки тому

      I think it helps to understand that it works for ANY divisor.

    • @thechaoslp2047
      @thechaoslp2047 4 роки тому +1

      The set of common divisors between a,b is identical to the set of common divisors of b,r
      The greatest common divisor is simply the greatest number of the set of common divisors.
      If the two sets are the same, the greatest member of the set must also be the same for both.
      So the gcd is the same for both pairs.

    • @davidjiang7929
      @davidjiang7929 4 роки тому +1

      @@thechaoslp2047 I think this is what I was missing. I was too hung up on the fact that we only got common divisors for both sets, and did not prove that the fact that the common divisors are the greatest common divisor.

  • @damandeepsingh8542
    @damandeepsingh8542 3 роки тому +1

    Pls make a video on hcf and lcm of fractions with their proof

  • @raginibhayana8305
    @raginibhayana8305 4 роки тому +1

    Thank you so much for making this video

  • @adityakrishna11
    @adityakrishna11 4 роки тому +2

    great proof thank you so much for this!

  • @michaelbachmann457
    @michaelbachmann457 Рік тому

    very good proof explanation

  • @kwokpinglau2400
    @kwokpinglau2400 6 років тому +2

    Thank you so much, you proof the theorem clearly.

  • @user-ye7yu2zc4t
    @user-ye7yu2zc4t 3 роки тому +1

    One of the best tutorial I have ever found 🔥

  • @coctaildz5388
    @coctaildz5388 3 роки тому +1

    i did not understand the last conclusion , can any one explain it to me from 08:13

  • @krishshah3974
    @krishshah3974 5 років тому +4

    talk about perfection!

  • @aryamankarde473
    @aryamankarde473 4 роки тому +1

    Which country are you from ma'am ?
    I want to meet you, you are such a wonderful teacher.

  • @seal0118
    @seal0118 4 роки тому +1

    wow, very intuitive, thanks

  • @AjayKumar-fb3gx
    @AjayKumar-fb3gx 6 років тому +18

    i lost you after you said e | a at 8:04. how did you get to the 'iff' statement ?

    • @abuabdullah9878
      @abuabdullah9878 4 роки тому +12

      It's clearer if we write it like this:
      Forward: (d|a AND d|b) -> (d|r AND d|b). Note, 'd' is any common divisor of 'a' and 'b'.
      Backward: (e|b AND e|r) -> (e|a AND e|b). Here, 'e' is any common divisor of 'b' and 'r'.
      So, any common divisor 'a' and 'b' is a common divisor of 'r' and 'b'. Also, any common divisor of 'b' and 'r' is a common divisor of 'a' and 'b'. Therefore, (a, b) and (b, r) share the same set of common divisors. Thus, the gcd(a, b) = gcd(b, r) as needed.

    • @mountainsunset816
      @mountainsunset816 4 роки тому +1

      @@abuabdullah9878 Dude, how can you tell that the shared common divisor is the gcd? I did not quite get your last sentence and the last step in the video.

    • @adam-jm1gq
      @adam-jm1gq 4 роки тому +2

      @@mountainsunset816 the way I've figured it, is we now know that the 2 sets are identical. So d and e and f and g and so on for however many iterations, all are common divisors in an identical set. So d for example could be any divisor in the set and e could also be any divisor and so on.
      Say for e.g you do a lot of iterations and get an answer of 1233 = 3(411) +0
      You have now reached the point where there is no remainder left.
      We now know that any common divisor of 1233 and 411 is also any common divisor of the original a and b (in this case a=7398 and b=2877)
      So if we want to know the greatest or largest common divisor of 7398 and 2877, then simply find the gcf of 1233 and 411. Well, there is no remainder and 411×3 = 1233 as figured out by the iterations. So 411 must be the gcf(1233,411). Thus it is the gcf(7398,2877). Please feel free to correct me if I'm wrong, I just thought I'd learn some uni maths in lockdown before I start uni, so I could be completely and utterly incorrect

    • @andrewkarem5874
      @andrewkarem5874 4 роки тому +3

      @​@@adam-jm1gq @Mountain Sunset: You're both on the right track. As Abu indicated, the shown steps demonstrate that (a, b) and (b, r) share the same set of common divisors -- and so do any of the (a,b,r)-type combinations throughout the sequence of steps. So (b, r) and (r, r_1) share the same set of common factors, as do (r,r_1) and (r_1,r_2)...all the way down to (r_i-1,r_i) sharing the same set of common factors as (r_i,0). But the greatest common factor of r_i and 0 is simply r_i! So you can think of this value propagating all the way back up through the sequence, since any LARGER divisor common to (a,b) would also be common to (b,r), which would be common to (r, r_1), ...all the way down to (r_i,0).

    • @praveenanookala4457
      @praveenanookala4457 4 роки тому +2

      @@andrewkarem5874 Oh, you made it so clear! Thank you!

  • @greyshinobi69
    @greyshinobi69 7 років тому +2

    nicely explained and in depth.Thank you!

  • @adityasoni6966
    @adityasoni6966 4 роки тому +1

    To understand completely, why gcd(a,b)=gcd(b,r) , first try to understand why gcd(a,b) !=gcd(a,r).

  • @mwsedits
    @mwsedits 4 роки тому +1

    Nice way to explain. May Allah bless u a sound health.
    Also voice is also great. Which is easily understandable.. Keep students make there issues clarify on priority.
    Also make more math videos on m phil topics plz.

  • @silicon9794
    @silicon9794 Рік тому

    Excellent explanation, understood clearly 😃

  • @AsBi1
    @AsBi1 3 роки тому +1

    Very helpful.

  • @cubingtubing8172
    @cubingtubing8172 3 роки тому

    So the common divisors are the same, but why greatest? Is this some anecdote that has been found over centuries or is there proof available for it?

  • @ruthwik8772
    @ruthwik8772 5 років тому +1

    Hopefully great video for the proof of this algorithm

  • @valeriereid2337
    @valeriereid2337 Рік тому

    Thanks very much for making this easy to understand.

  • @TheBSpaZZ
    @TheBSpaZZ 5 років тому +1

    What a wonderful Video. I applaud you. I suggest you include a "Thanks you" at the end, gives the video closure when playing full screen.

  • @rishabhpandey3822
    @rishabhpandey3822 6 років тому +2

    very nicely done👍

  • @navyatayi6956
    @navyatayi6956 7 років тому +21

    this is really well done! please keep making videos of more math proofs...especially on topics like calculus...please..this video is very clear to understand...and thank you for this video

  • @abd-elrahmanmohamed9839
    @abd-elrahmanmohamed9839 6 років тому +2

    Well explained . Thanks a lot !

  • @rithuu4
    @rithuu4 День тому

    Best explanation ❤

  • @RoyalGun-9mm
    @RoyalGun-9mm 2 роки тому

    short and informative.. perfect.

  • @edisonyin9711
    @edisonyin9711 4 роки тому +2

    Thank you so much, that helps!!

  • @gogoat2412
    @gogoat2412 5 років тому +3

    3:30 you made the fibonacci sequence!!

  • @kunalkashyap9904
    @kunalkashyap9904 4 роки тому +1

    Thank you sir :) I have studied many topics of Vidya Guru channel as well. They also use updated exam relevant content.

  • @math_lover5292
    @math_lover5292 3 роки тому

    Really this video has helped me a lot......never wondered such beautiful stuff could be arrived by just using these simple steps........school teachers never make us fall in love with maths by providing such beautiful proofs....
    Thanks a lot mam.....
    ❤️🧡💛💚💙💜🤎🤍_from india.....

  • @HiHi-iu8gf
    @HiHi-iu8gf 3 роки тому

    best explanation i've found so far, but brain still kinda fried lol

  • @gladyouseen8160
    @gladyouseen8160 5 років тому +2

    Wonderful

  • @abhinavraut3099
    @abhinavraut3099 4 роки тому +1

    Thank you!

  • @samarthjain5295
    @samarthjain5295 4 роки тому +1

    Finally i understood this..... thanx a lot😁

  • @SathvickSatish
    @SathvickSatish 7 років тому

    Very well done presentation! You should be really popular!

  • @damandeepsingh8542
    @damandeepsingh8542 3 роки тому +1

    Very good

  • @champion5545
    @champion5545 10 місяців тому

    Wait, pause. How does d being a divisor of b suddenly make d being a divisor of bq? How did you reach that conclusion?

    • @lbmath5441
      @lbmath5441 10 місяців тому

      If d is a divisor of b, then it would have to be a divisor of any multiple of b. And bq is a multiple of b. For example, if 6 divides 12 (letting d = 6 and b = 12), then 6 divides 12(3) (letting q = 3). More generally, once you know 6 "goes into" 12, you know that 6 "goes into" any multiple of 12. Once you know d "goes into" b, you know that d "goes into" b times any other whole number, so it "goes into" b times q.

  • @harivatsaparameshwaran4174
    @harivatsaparameshwaran4174 6 років тому +1

    I mean tho its fairly obvious that a multiple subtracted from a greater multiple is still a multiple, don't u have to prove that a-bq is also divisible by d?

    • @biocuts
      @biocuts 5 років тому +1

      no, because (a-bq)/d => a/d - (b/d)q, and that's an integer since a/d and b/d are integers, meaning it is divisible.

  • @abdullaha2108
    @abdullaha2108 10 місяців тому

    I dont understood one point that is, how d|a, d|b implies that d|a-bq. Please any buddy explain me.

    • @lbmath5441
      @lbmath5441 10 місяців тому

      Anytime you have d "dividing" a number (i.e. d divides b), then it divides a multiple of that number (so d divides bq). For example, if 6 divides 12, then 6 divides 24, and 36, and 48, etc. So if d|b, then d|bq. Furthermore, if d divides two different numbers, a and bq, then it divides their sum or difference, since if it's a factor of both, you can "factor it out" of the expression. So, if d|a and d|b, then d also divides bq, and therefore it divides a - bq.

    • @abdullaha2108
      @abdullaha2108 10 місяців тому

      Thank you buddy. Nice explanation.
      @@lbmath5441

  • @m_sh2240
    @m_sh2240 2 роки тому

    thank you so much for doing this🎉

  • @user-ye7yu2zc4t
    @user-ye7yu2zc4t 3 роки тому +1

    Thank you so much maam

  • @ziedbrahmi4812
    @ziedbrahmi4812 2 роки тому

    a great video, thank you ! (LIKED IT AND SUBSCRIBED)

  • @mominmondal1839
    @mominmondal1839 5 років тому +1

    Thank you

  • @ankitthakurankit4764
    @ankitthakurankit4764 3 роки тому

    3:30 i think gcd(55,34) is 2 as ri here is 2

  • @thechaoslp2047
    @thechaoslp2047 4 роки тому

    beautiful. thank you.

  • @DEEPAKKUMAR-oo1vv
    @DEEPAKKUMAR-oo1vv 3 роки тому

    Thank you so much.

  • @kunalsinghgusain2070
    @kunalsinghgusain2070 4 роки тому +2

    You got my sub 👍 and a thanks.

  • @aneimabui9718
    @aneimabui9718 4 роки тому

    Thanks 🙏 for helping me

  • @josephlai7737
    @josephlai7737 3 роки тому

    Thank you so much!

  • @trendytrenessh462
    @trendytrenessh462 6 років тому +2

    Thanks a lot this really helped! :)

  • @hansvandenbogert8992
    @hansvandenbogert8992 7 років тому +5

    Should the last line in the example not be "2=1(2) +0" ?

  • @aksenchukaleksandr3273
    @aksenchukaleksandr3273 Рік тому

    thank you. very helpful

  • @thachpham8597
    @thachpham8597 2 роки тому

    Thank you very much

  • @renjitharejikumar1619
    @renjitharejikumar1619 7 років тому +2

    Thank u sooo much maam👍

  • @dogamertaydogan2803
    @dogamertaydogan2803 6 років тому +2

    thanks

  • @pulse5863
    @pulse5863 5 років тому +2

    absolutely amazing thank you so much ! you are awsome.

  • @minatirout3286
    @minatirout3286 5 років тому +1

    Thanks a lot

  • @calvin2888
    @calvin2888 Рік тому

    Excellent.

  • @mcat0183
    @mcat0183 3 роки тому

    Thank you so much :)

  • @edwinshelly993
    @edwinshelly993 3 роки тому

    Thanks a ton!

  • @wpajunior
    @wpajunior 7 років тому +2

    Good! Thank you

  • @zahra-hrm
    @zahra-hrm 3 роки тому

    Thank u 😊

  • @rameshchandra1696
    @rameshchandra1696 6 років тому +2

    Neat.

  • @luciuspertis5672
    @luciuspertis5672 5 років тому +2

    THIS IS SO TO THE POINT .............. HATSsssOFF

  • @ゴリラ-w3h
    @ゴリラ-w3h 6 років тому +2

    日本語の教科書よりわかりやすい

  • @legendsplayground7017
    @legendsplayground7017 6 місяців тому

    Great job, it's really clear, thanks for that :) Jesus bless ❤

  • @user-od2ox5we4b
    @user-od2ox5we4b 3 роки тому +1

    ALL I CAME FOR WAS IN 6.26 AND DIDN'T UNDERSTAND IT .... DAMM IT

  • @tsunningwah3471
    @tsunningwah3471 10 місяців тому

    kjb

  • @cobi617
    @cobi617 3 роки тому

    1 min into the vid and im already stuck :(

  • @tsunningwah3471
    @tsunningwah3471 10 місяців тому

    sesxx

  • @srikantht2403
    @srikantht2403 4 роки тому +2

    Thank you

  • @_cytosine
    @_cytosine 2 роки тому

    Thank you!

  • @gurumayummadan2646
    @gurumayummadan2646 4 роки тому +2

    Thank you

  • @thetrainoflife8327
    @thetrainoflife8327 3 роки тому

    Thank you