Number Theory: The Euclidean Algorithm Proof

Поділитися
Вставка
  • Опубліковано 9 лис 2024

КОМЕНТАРІ • 67

  • @XxXMrGuiTarMasTerXxX
    @XxXMrGuiTarMasTerXxX 4 роки тому +54

    I used to watch you for fun, now you're also helping me with my degree in maths :D Thank you!

  • @georgesadler7830
    @georgesadler7830 3 роки тому +10

    Professor Penn, thank you for a classic proof on the Euclidean Algorithm. These are historic topics in mathematics.

  • @paigecarlson1742
    @paigecarlson1742 Рік тому

    The way the last pos remainder percolates up. I appreciate finally explaining why it works, not just that it works.

  • @sporadicdrive5884
    @sporadicdrive5884 4 роки тому +14

    Just found this channel and I'm loving the content so far! Thanks a lot

    • @subid.majumdar
      @subid.majumdar 3 роки тому

      Do you know other channel like this, I want to learn more math

  • @Avighna
    @Avighna Рік тому +3

    Wow! Amazing! I actually understood this (after a lot of effort). Always love the eureka moments I get when learning about a new proof. Thank you!

  • @mharouny1
    @mharouny1 7 місяців тому +2

    The last part is because d

    • @kylebryancagasan4447
      @kylebryancagasan4447 3 місяці тому

      If I am not mistaken, that's because since the sequence r1, r2, ... , r_n-1 is decreasing and that d | r_n-1 implies d

  • @khizaramjad9620
    @khizaramjad9620 5 років тому +16

    Well organized.
    Thanks alot!

  • @Arjunsiva
    @Arjunsiva 3 роки тому +5

    Awww, i miss the sound of writing on chalk board

  • @shuttlecrab
    @shuttlecrab Рік тому

    Thank you for opening with what q and r are and how you get them.
    A good few articles I've read don't actually say what they are, which is annoying, because for a number-phobe like myself, a more granular introduction is needed quite often.
    For me, just looking at the equation does not intuitively tell me that q and r are generated by dividing a and b

  • @PunmasterSTP
    @PunmasterSTP 3 роки тому +3

    Euclidean? More like Eu-clear-ian, because now I understand; thank you so much for explaining!

    • @MonkeyAssassin-qi8gw
      @MonkeyAssassin-qi8gw 4 місяці тому +1

      Great job punmaster, you’ve successfully ruined my day😂

    • @PunmasterSTP
      @PunmasterSTP 4 місяці тому

      @@MonkeyAssassin-qi8gw Then my work here is done 👍
      On the flip side, if you keep listening to painful puns, eventually you’ll become numb(er)…

    • @MonkeyAssassin-qi8gw
      @MonkeyAssassin-qi8gw 4 місяці тому +1

      @@PunmasterSTP you’re ruthless

    • @PunmasterSTP
      @PunmasterSTP 4 місяці тому

      @@MonkeyAssassin-qi8gw I once told someone something ridiculous, and they said "Euclid-en' me!"

  • @PMe-my1td
    @PMe-my1td 2 роки тому +16

    Thanks for confirming how dumb I am 🙂

  • @khetnhio
    @khetnhio 4 роки тому +2

    great proof, very clearly shown 10/10

  • @savi4420
    @savi4420 2 роки тому

    How cutely u just proved it and i didn't even realised that I understood. Great teacher. Thankyou so much.

  • @krishshah3974
    @krishshah3974 4 роки тому +1

    I don't know if this was intentional but the outfit and the background really match each other (ninja-like) :)

  • @adinaadina4549
    @adinaadina4549 3 роки тому +8

    Hi, I'm afraid you have so many views no one would answer my question. But still.
    I don't understand how you can deduce that d | a -bq from d | a, d | b. Can someone explain me the intermediate steps ?

    • @bingqingwang850
      @bingqingwang850 3 роки тому +6

      In the previous "Divisibility Basic" part, there is a propositon that " If a|b and a|c, then for any x and y as integers, there is a|bx+cy". So according to this, we have d|a and d|b, then d|ax+by where x = 1, y = -q1.

    • @adinaadina4549
      @adinaadina4549 3 роки тому +1

      @@bingqingwang850 okay thank you very much !!!

    • @mominahmed7-044
      @mominahmed7-044 3 роки тому +4

      if d|a and d|b then we can write this as a = dx and b = dy (all integers). Any linear combination like pa + qb (p and q integers, again) can be written as dxa + dyb which you can factorize to d(xa + yb) which of course would be a multiple of d, the thing we initially sought to prove.

    • @KRITHEESH-it7un
      @KRITHEESH-it7un Рік тому

      ​@@mominahmed7-044 thank you very much

  • @chitranshuvarshney4863
    @chitranshuvarshney4863 2 роки тому

    well organized video

  • @bettyswunghole3310
    @bettyswunghole3310 3 роки тому +2

    Is this a proof by induction?

  • @TolgaYilmaz1
    @TolgaYilmaz1 4 роки тому +20

    Was it a typo at 5:25?
    You wrote:
    d | b - r1 * q1 implies d | r2
    I think it should have been:
    d | b - r1*q2 implies d | r2
    Since equation 2 is:
    b = r1*q2 + r2

  • @souverain1er
    @souverain1er 3 роки тому +2

    @Michael Penn How do you prove that the last sequence in the division has a remainder of zero?

    • @chinmayelastname3544
      @chinmayelastname3544 3 роки тому +2

      that's because if the remained is not zero, then the sequence will keep going on

    • @yoman6367
      @yoman6367 4 місяці тому

      had the same question

  • @MrAmangandhi
    @MrAmangandhi 3 роки тому +3

    at 5:41 shouldn't it be d divides b-(r1q2)

    • @scholarssanctuary123
      @scholarssanctuary123 7 місяців тому

      Yes I think so but either way the point is clear I guess

  • @VictorHugo-xn9jz
    @VictorHugo-xn9jz 10 місяців тому

    Nice one.

  • @rainmakesvideos
    @rainmakesvideos 5 років тому +2

    Does d | r_(n-1) imply (r_(n-1)) / d = 1 and that d = r_(n-1) ?
    Read: Does the last statement that d is a divisor of the last remainder imply that the remainder divided by d is equal to 1, and does that mean that d is equal to the last remainder?

    • @MichaelPennMath
      @MichaelPennMath  5 років тому +1

      Here we are using the definition of the gcd. We start by showing that r_{n-1} is a common division of a and b then suppose we have another common divisor of a and b and show that must divide r_{n-1}. This is precisely the definition of gcd(a,b). That d in the proof is only a divisor of the gcd, it may not be the gcd itself.

    • @xRabidz
      @xRabidz 4 роки тому +4

      d is assumed to be ANY common divisor of a and b, so if d | r_(n-1) then that means d

    • @mateuszpachulski6211
      @mateuszpachulski6211 Рік тому +1

      @@xRabidz I hope you see this comment :P As it drives me nuts :S we know that r__(n-1) is some common divisor, we do not know by the proof that it is the greatest one it may not be. So we take some divisor d, it may be the greatest but it also may not be the greatest, if we would take a d that is not the greatest one and r_(n-1) may not be the greatest one we are left with a d equal to r_(n-1), how does this proof that r_(n-1) is the greatest one ...

    • @theblinkingbrownie4654
      @theblinkingbrownie4654 Рік тому +1

      ​@@mateuszpachulski6211r_(n-1) MUST be the greatest, we are not trying to prove with contradiction here. Basically gcd(a,b) is defined that ANY divisor d of a and b must divide the gcd. Think about it, any common factors of 30 and 40 must divide 10.

    • @arkashvijayakumar4181
      @arkashvijayakumar4181 Рік тому +1

      thanks helped alot@@xRabidz

  • @KFP4488
    @KFP4488 4 роки тому +2

    How can we tell the sequence of r1, r2, r3 is decreasing?

    • @aaronzoll5289
      @aaronzoll5289 4 роки тому +5

      By the division algorithm, a = bq + r where r < b because if it is great than or equal, it gets absorbed into q. So each r(n) < r(n-1)

  • @chickensalad1369
    @chickensalad1369 3 роки тому

    yea I get this and its great and all but WHERE IS THE "And thats a good place to stop"

  • @footballistaedit25
    @footballistaedit25 4 роки тому

    Thanks for a great video♥️♥️♥️

  • @ashishkumarsharma5038
    @ashishkumarsharma5038 6 місяців тому +1

    what if d=1?

    • @MonkeyAssassin-qi8gw
      @MonkeyAssassin-qi8gw 4 місяці тому

      Then there would be no purpose in proving😅,we assume that d does not equal one as there would be no point.

  • @G0j0_Satur0HI
    @G0j0_Satur0HI 2 місяці тому

    Hi can someone pls explain that if dIrn-1 how is it the gcd(a,b)?

  • @ignassiaulys9160
    @ignassiaulys9160 4 роки тому +1

    wait so how is rn-1 a divisor of rn-3 if rn-2 isnt a divisor of rn-3?

    • @marceorigoni6614
      @marceorigoni6614 4 роки тому

      rn-2 is not a divisor of rn-3, because rn-3/ rn-2 have a rest ≠ 0. I mean an example is 12 = rn-3 ,8 = rn-2 and 4 = rn-1. There you see 12/8 = 1*8 + 4 = 1,5. Not a divisor.

    • @gajrajsingh51
      @gajrajsingh51 3 роки тому

      We know, r_{n-1} | r_{n-2}, hence q_{n-2} * r_{n-2} + r_{n-1} | r_{n-3}.

  • @nicholasalkhawli6057
    @nicholasalkhawli6057 4 роки тому

    Shouldnt we prove that r1 and all other r don't divide a and b

  • @saikiranbanti5415
    @saikiranbanti5415 4 роки тому

    Really a very good one easy to understand

  • @sakethram538
    @sakethram538 4 роки тому

    if d/rn-1 then d should be the gcd of a & b

    • @keinernichts3531
      @keinernichts3531 4 роки тому +2

      It's greatest common divisor, emphasis on greatest.

  • @famoustrends_mmr
    @famoustrends_mmr 7 місяців тому

    3:08 how to rn-1 divide rn-2 explain

    • @rayzewis3361
      @rayzewis3361 7 місяців тому +1

      Because we can write r_{n-2} = r_{n-1}*q_{n}, which is equivalent to saying r_{n-1}|r_{n-2} (by divisibility definition: a=bn then a|n)

    • @famoustrends_mmr
      @famoustrends_mmr 7 місяців тому

      @@rayzewis3361 but r_{n-2} = r_{n-1}*q_{n} + r_{n} sir you can use it not this r_{n-2} = r_{n-1}*q_{n}

  • @chritophergaafele8922
    @chritophergaafele8922 4 роки тому +3

    How do you prove that the sequence r1,r2,r3...rn decreases

    • @jackmaibach8316
      @jackmaibach8316 4 роки тому +8

      r1 < b otherwise the choice for q1 was wrong.
      r2 < r1 otherwise the choice for q2 was wrong.
      and so on and so forth.
      this is a consequence of how remainder upon division is defined.

  • @siddhantkhare2775
    @siddhantkhare2775 2 роки тому +3

    When did Mark Zuckerberg start teaching Mathematics.....Lmao🤣🤣🤣

  • @zhuolovesmath7483
    @zhuolovesmath7483 2 роки тому

    Take a rest buddy, you seem pretty tired

  • @brunon.8962
    @brunon.8962 4 роки тому

    Why can't you prove this shit works by using real world things like a field or something useful and meaningful? Why does it have to be bulk lines of gibberish simbols?

  • @ibrahimElKhalil55
    @ibrahimElKhalil55 Рік тому

    at 5:41 shouldn't it be d divides b-(r1q2)