Bézout's identity: ax+by=gcd(a,b)

Поділитися
Вставка
  • Опубліковано 3 січ 2025

КОМЕНТАРІ • 125

  • @wobblyjelly345
    @wobblyjelly345 3 роки тому +25

    You explain this so well and the only example I have found that I can actually follow, thank you! 😊

  • @halik919
    @halik919 4 роки тому +18

    I was lazy and didn't want to watch an 18 minute video!
    Now, I am more than grateful I clicked and watched. Thank you, best explanation ever!

  • @pablosabogal5132
    @pablosabogal5132 9 місяців тому +5

    Thank you for your upbeat atittude that made me feel a lot better!

  • @wajdefadool3459
    @wajdefadool3459 2 роки тому +3

    BIG Thanks man your videos helps a lot as a collage student

  • @chloinger
    @chloinger Рік тому +3

    This was the best explanation ever! Thank you! You saved my maths exam. :)

  • @khoaang5712
    @khoaang5712 3 роки тому +3

    Thank you for your explanation, it helps my report so much. And I really like your smile. Thank you

  • @lilianavalente1385
    @lilianavalente1385 9 місяців тому +2

    Thank you, you explained it so well that I am confident in passing my discrete maths exam

  • @MathForLife
    @MathForLife 6 років тому +29

    Nice!! My favorite part is quantifiers "forall" and "exists":D

  • @dariushuang1115
    @dariushuang1115 2 роки тому +2

    for people unfamiliar with the Euclid's Algorithm, it's actually based upon the lemma: Suppose b = aq + r, then gcd(a, b) = gcd(a, r). You can prove this lemma by contradiction in ~8 lines

  • @rounakchatterjee8687
    @rounakchatterjee8687 7 днів тому

    In india we do the Euclid division algorithm the same thing in a bit different way it is really awesome to see that a same lemma is done such differently in other nations

  • @mashroom2927
    @mashroom2927 9 місяців тому

    8:57 this reminds me of finding the multiplicative inverse in ciphering class

  • @shacharh5470
    @shacharh5470 6 років тому +12

    Cool fact: Bezout's lemma (that's how I learned it) is actually applcable in any group that's similar enough to Z. I learned a general form of the lemma in a course on group theory.
    Of course in group theory the notions of gcs and lcm are defined more generally in terms of subgroups and their generating sets. Interesting stuff if you're into that sort of thing.

    • @alkankondo89
      @alkankondo89 6 років тому +1

      That's cool! I have taken a course on group theory but have not heard of Bezout's Lemma. I'll have to look more into that.

  • @maaikevreugdemaker9210
    @maaikevreugdemaker9210 5 місяців тому

    It feels so weird to have done calculus without having learned this stuff.. thanks!

  • @mjones207
    @mjones207 6 років тому +1

    I was so hoping at 11:43 for "I will call this x-naught and y-naught because... why not?"

    • @blackpenredpen
      @blackpenredpen  6 років тому +1

      mjones207 oh... I should have done that. :)

  • @psrs985
    @psrs985 2 роки тому +1

    Woah!! Wonderful explination Love from indiaa💗

  • @BigDBrian
    @BigDBrian 6 років тому +16

    11:45 "I will call this x naught and y naught because why not" is what you should've said! you missed a pun opportunity. I'm disappointed.

  • @doodelay
    @doodelay 4 роки тому +1

    damn this was a really clever solution, props to bezout!

  • @jacksonsingh855
    @jacksonsingh855 6 років тому +2

    Please do a videos on how to find inverse of a function

    • @112BALAGE112
      @112BALAGE112 6 років тому

      If you can't solve the equation y=f(x) for x then use:
      en.wikipedia.org/wiki/Lagrange_inversion_theorem

  • @kantaprasadsinha8025
    @kantaprasadsinha8025 3 роки тому

    Thank u. U may arrange a video on Bezout identity and Uclid Algorithm.

    • @azzteke
      @azzteke 2 роки тому

      EUCLID please!

  • @chronicsnail6675
    @chronicsnail6675 3 роки тому

    this is better than the resources my uni has thanks

  • @NotYourAverageNothing
    @NotYourAverageNothing 6 років тому +1

    I have a few suggestions for videos. Here’s just one:
    Two circles of radius R intersect each at exactly two points. Lines are drawn from each of those points to the center of one of the circles. Those lines and the inner arc of the other circle define a region.
    What is its maximum area?

    • @NotYourAverageNothing
      @NotYourAverageNothing 6 років тому

      Shree Ganesh I don’t know the answer with 100% certainty, but…
      …I think (going off of memory here) it’s (-πR^2 + R√3)/6.

  • @mzoon6823
    @mzoon6823 5 років тому

    Thank you man, this is so useful

  • @tejadamichelle4889
    @tejadamichelle4889 4 роки тому +2

    Thank you for a very nice explaination. Keep it up 🙂

  • @x15cyberrush9
    @x15cyberrush9 5 років тому +1

    thank you black pen red pen

  • @shrameesrivastav1130
    @shrameesrivastav1130 Рік тому

    Damn, this is flipping awesome explanation! ♥

  • @Magic73805
    @Magic73805 6 років тому +6

    Thank You vey much. Sir.

  • @sharpnova2
    @sharpnova2 2 роки тому

    I haven't watched this video yet but just judging from the very first statement you wrote at the beginning isn't this just the extended euclidean algorithm

  • @tarunsingh7243
    @tarunsingh7243 Рік тому

    Amazing explanation 👌👌

  • @stanleygondwe6859
    @stanleygondwe6859 6 місяців тому

    Excellent explaination

  • @rohitg1529
    @rohitg1529 6 років тому

    Can you please make a video about why Euclid’s algorithm finds the GCD? We were taught how to do this in the 6th grade I think, but I never thought about why it works until now.

    • @sharonjuniorchess
      @sharonjuniorchess 4 роки тому

      This might help medium.com/i-math/why-does-the-euclidean-algorithm-work-aaf43bd3288e

  • @abd-elrahmanmohamed9839
    @abd-elrahmanmohamed9839 6 років тому

    Nice as usual ! thanks!

  • @NeelSandellISAWESOME
    @NeelSandellISAWESOME 4 роки тому

    nice, i didn't know about the lcm trick. Thanks

  • @gdudhdydhsudjdu6350
    @gdudhdydhsudjdu6350 Рік тому

    How can we prove the validity of a theorem with a single example?

  • @benjaminbrady2385
    @benjaminbrady2385 6 років тому +2

    Do the numbers on the side of Euclid’s algorithm always multiply to also give you the gcd or is that a coincidence

  • @mattgsm
    @mattgsm 6 років тому

    What do the pen colours represent? Is the black colour to do with the original question while red is an insertion or something?

  • @stevengottlieb6023
    @stevengottlieb6023 6 років тому +4

    I am sorry, but you did not show that ALL solutions are in the form x=-2+7m and y=7-24m. In theory there can be other solutions then the ones you showed.

    • @blackpenredpen
      @blackpenredpen  6 років тому +4

      Steven Gottlieb I agree with you. But I was just showing an example on how this works. Notice the video is 18 minutes already. Max or I will work out the proof for that in the future on another video.

    • @NotYourAverageNothing
      @NotYourAverageNothing 6 років тому

      blackpenredpen Can you plz prove that Bézout Coefficients are not unique? Are there any numbers were there *_are_* unique?

    • @NotYourAverageNothing
      @NotYourAverageNothing 6 років тому

      Steven Gottlieb It does give every solution, unless m is restricted to integers.

    • @stevengottlieb6023
      @stevengottlieb6023 6 років тому

      Thank you for responding!

    • @stevengottlieb6023
      @stevengottlieb6023 6 років тому

      Yes, every solution was given. The problem is that was not proven. Even BPRP agrees with that.

  • @sergiogarofoli573
    @sergiogarofoli573 5 років тому

    I have an issue here: After Bézout's identity, ax+by=gcd(a,b), My problem is such as "ax" is known N and "by" is the unknown from the type [-(x-1)*gcd(a,b)] and of course gcd(a,b) is the unknown I'm looking for.

  • @znarwhal4530
    @znarwhal4530 6 років тому +2

    What does the upside-down A and the backwards E mean?

    • @benplayzgames1
      @benplayzgames1 6 років тому +5

      AddQ he literally said it in the video

    • @vanessakitty8867
      @vanessakitty8867 6 років тому +8

      For All and There Exists

    • @SleepyRickyC92
      @SleepyRickyC92 6 років тому +1

      AddQ Quantifiers. You will encounter it in a discrete math or logic course.

  • @DaanSnqn
    @DaanSnqn 6 років тому

    Why do x and y have to be integers? If you fill in complex numbers for m they cancel out as well, right?

  • @General12th
    @General12th 6 років тому

    Should I multiply it out?

  • @chronicsnail6675
    @chronicsnail6675 3 роки тому

    whats so important about bezouts indentity

  • @sutgdi749
    @sutgdi749 6 місяців тому

    why he holding that black ball ?

  • @PhilBoswell
    @PhilBoswell 6 років тому

    The Number Theory playlist in the description contains a private video at #4: I have watched all the others so what am I missing?

  • @chronicsnail6675
    @chronicsnail6675 3 роки тому +2

    your way of finding gcd is better than text book

    • @worsethanjoerogan8061
      @worsethanjoerogan8061 3 роки тому +1

      It's technically the same way, but I agree that writing it out in that equation style is confusing as hell

  • @pamameh1841
    @pamameh1841 4 роки тому

    Don't the possible values for Y have to be in the range 0 to (n-1) in our case 0 to (432-1)? ie 7 +432 = 439 but that's greater than 432. so only one solution?

  • @aiden2531
    @aiden2531 26 днів тому

    9:09 “multiple掉”

  • @alandaniels2095
    @alandaniels2095 2 роки тому

    Why does he have ball in his hands?

  • @TactTTR
    @TactTTR 2 роки тому

    @4:41 you had a mistake the gcd(436, 126) = 2

    • @enginermis4626
      @enginermis4626 Рік тому

      wtf

    • @itsalencraft1717
      @itsalencraft1717 2 місяці тому

      No it is you have to check both sides.
      436 = 2 x 2 x 2 x 3 x 3 x 3 x 2
      126 = 2 x 3 x 3 x 7
      Both sides have a common number 2 x 3 = 6
      So, GCD (436,126) = 6

    • @TactTTR
      @TactTTR 2 місяці тому

      @@itsalencraft1717 divide 436%6!=0 126%6=0 how is 6 the gcd

  • @kantaprasadsinha8025
    @kantaprasadsinha8025 3 роки тому

    One thing is peculiar. Upto 1960 agebra books, there was no word Euclidean algorithm,a term for determining G.C. D. All are forced to swallow this coinage.Again, Bezout' s identity is renamed as Extended Euclidean Algorithm . This is cultural imperialism.as if no civilisation did not think GCD or HCF

  • @yousefalyousef59
    @yousefalyousef59 3 роки тому

    let:
    1/(a-b)(a+b)=A/(a+b)+B/(a-b)
    and form it
    ■A(a-b)+B(a+b)=1
    ■a(B+A)+b(B-A)=1
    Here are two cases of a Bezout's Lemma.
    say some thing about that.

  • @joanlegada5370
    @joanlegada5370 4 роки тому

    so the final x is -2+7m and final y is 7-24 m?? :)

  • @jiajunxu614
    @jiajunxu614 3 роки тому

    proof is more difficult than application

  • @fadirached2247
    @fadirached2247 4 роки тому

    Very helpful!!

  • @maxhaibara8828
    @maxhaibara8828 6 років тому +2

    Bezout Identity? I thought the name is Extended Euclidean

    • @shacharh5470
      @shacharh5470 6 років тому

      It's not an identity, I don't know why he calls it that. It's an existence claim so clearly not an identity. As for the name, I've learned it as "Bezout's lemma", there's a version of it for integers, a version of it for polynomials and a generalized version of it for groups

    • @sugarfrosted2005
      @sugarfrosted2005 6 років тому +2

      The extended Euclidean ALGORITHM is how you find the integers x and y in Euclidean domains (such as the integers). The Bezout identity is the resulting equation. There are mathematical structures where such x and y exist, but even the normal Euclidean algorithm doesn't work. As a general rule, the result isn't the algorithm.

    • @sugarfrosted2005
      @sugarfrosted2005 6 років тому

      Shachar H Wikipedia calls it the Bezout identity and I think I've heard that term used in Bezout domians (things where the x and y always exist).

    • @eleazaralmazan4089
      @eleazaralmazan4089 6 років тому

      Both Bezout's Identity and Bezout's Lemma are correct.

  • @halanasser5589
    @halanasser5589 5 років тому

    How to use it if a+b is the exponent and thier gcd(a,b)=1 ??

  • @jameshenner5831
    @jameshenner5831 6 років тому

    Hey Blackpenredpen, do a video on the (complex valued) infinite series Sum(i^(n-1)/n) from n = 1 to infinity.

  • @Abohafsah
    @Abohafsah 4 роки тому

    Change your lighting system, board can’t be seen easily

  • @patipateeke
    @patipateeke 6 років тому

    Thanks!

  • @yosafendrafendra7960
    @yosafendrafendra7960 6 років тому

    Hei I really like your posts!! but i have a question for you bout 3D topic. ABCD.EFGH Cube, its side is a. Point O is intersection between AC and BD. Determine the distance between line EO and line HB..please answer thiss

  • @srpenguinbr
    @srpenguinbr 6 років тому

    Amazing!

  • @ShahriarNafiz50
    @ShahriarNafiz50 Рік тому

    Awesome!!!

  • @mihaipuiu6231
    @mihaipuiu6231 3 роки тому

    Dear prof. Blackpenredpen...you are very good speaker,,...your problems are very interesting, but..please...your carioca is writing sometimes, hard for me to read symbols. Can you improve this symbol's visibility?

  • @siggelicious4485
    @siggelicious4485 2 роки тому

    fucking genius

  • @riteshrastogi5388
    @riteshrastogi5388 5 років тому +3

    there is also a blue pen LOL : )

  • @manu_j_
    @manu_j_ 6 років тому +2

    9:02 something magic happened

  • @arjunanand4289
    @arjunanand4289 Місяць тому

    tysm

  • @Anteater23
    @Anteater23 6 років тому +7

    Did my 'Calc 3' paper today. Was nervous and made a couple stupid errors and I didn't get a couple of things but on the whole it went ok. One mistake was 4r^4 x 0 x 0 = 4r^4

  • @makshudulislam7442
    @makshudulislam7442 4 роки тому

    We want more IMO Problem

    • @sharonjuniorchess
      @sharonjuniorchess 4 роки тому +1

      Question: A dealer bought a number of horses at $344.00 each, and a number of bullocks at $265.00 each. He then discovered that the horses had cost him in all $33.00 more than the bullocks. Now, what is the smallest number of each that he must have bought? [Source: 536 Puzzles by Dudeney #20]

  • @salazar.eduardo
    @salazar.eduardo 3 роки тому

    Great!

  • @DeViLTh0rn
    @DeViLTh0rn 5 років тому

    “Because we are know we are smart, don’t do that “ 😂😂😂

  • @sahhaf1234
    @sahhaf1234 4 роки тому

    Superb..

  • @eipiwau
    @eipiwau 6 років тому

    You are calling it y naught because why not xD

  • @john-athancrow4169
    @john-athancrow4169 6 років тому

    WHY A.L. AGAIN!!!!!!!!!!

    • @blackpenredpen
      @blackpenredpen  6 років тому

      Ιωάννης - Αθανάσιος Χαραλάμπους
      What's AL?

  • @blackloop1861
    @blackloop1861 6 років тому +2

    Can you do a video about 1+2+3+4....=-1/12

  • @OonHan
    @OonHan 6 років тому

    Hi!

  • @FlexThoseMuscles
    @FlexThoseMuscles Рік тому

    whohoo solved

  • @mathematicstvc6000
    @mathematicstvc6000 6 років тому

    Hello

  • @stanleygondwe6859
    @stanleygondwe6859 6 місяців тому

    ❤❤❤

  • @matteovitellaro1082
    @matteovitellaro1082 4 роки тому

    I love you

  • @eliascaeiro5439
    @eliascaeiro5439 6 років тому +1

    0:19 "Okay in this video I'm going to demonstrate one of the most useful facts in number theory." but you didn't prove anything, you just showed an example. Honestly I must say I'm a bit disappointed with your videos lately. Anyway, it's just what I think so don't let it bother you.

    • @ansonngpersonalgoogleaccou5104
      @ansonngpersonalgoogleaccou5104 6 років тому +1

      He 'demonstrated'

    • @blackpenredpen
      @blackpenredpen  6 років тому +3

      I did demonstrate. Usually this is easier when we first see an example then see the proof.

    • @eliascaeiro5439
      @eliascaeiro5439 6 років тому +4

      Okay, then sorry for what I said. But I still prefer proofs than examples.

    • @blackpenredpen
      @blackpenredpen  6 років тому +1

      Max does lots of proofs : )
      I will do so too later.

    • @eliascaeiro5439
      @eliascaeiro5439 6 років тому +2

      Yeah I know, I subscribed when you uploaded "Practice your Trig".

  • @kenichimori8533
    @kenichimori8533 6 років тому

    Ensemble theory d(^^)