Math for fun: integral of ln(x) from 1 to ? is equal to 2

Поділитися
Вставка
  • Опубліковано 9 лют 2025
  • Get started with a 30-day free trial on Brilliant: 👉brilliant.org/... ( 20% off with this link!)
    I want the area under the curve y=ln(x) from 1 to some number t to be 2, but how can we achieve this? Not only do we have to use calculus integration by parts, but we also need to use the Lambert W function to solve the resulting equation for us.
    💪 Support this channel and get my math notes by becoming a patron: / blackpenredpen
    🛍 Shop my math t-shirt & hoodies: amzn.to/3qBeuw6
    ----------------------------------------
    #blackpenredpen #math #calculus #apcalculus

КОМЕНТАРІ • 137

  • @blackpenredpen
    @blackpenredpen  8 місяців тому +10

    Get started with a 30-day free trial on Brilliant: 👉brilliant.org/blackpenredpen/ ( 20% off with this link!)

    • @Storyrealité-2
      @Storyrealité-2 8 місяців тому

      Bonjour prof vous êtes un excellent talant vivant en mathématiques.. j'aimerais être comme vous mais pourriez vous me dire comment être aussi brillant que vous....je souhaite être meilleur c'est pourquoi je me confie à vous...

    • @wowyok4507
      @wowyok4507 8 місяців тому +1

      brilliant removed their contest 2 course. I signed up by your link cause I wanted to support you, but brilliant is actually terrible now and 100% not worth the price

  • @salehsattouf2320
    @salehsattouf2320 8 місяців тому +145

    In Finding Nemo they could have just used the Lambert-W function and then they would easily find Nemo

    • @maximilianarold
      @maximilianarold 8 місяців тому +20

      They need to heve Nemo in the exponent first and I doubt they had that

  • @bodesshorts8640
    @bodesshorts8640 8 місяців тому +109

    Yay the fish is back

  • @shophaune2298
    @shophaune2298 8 місяців тому +24

    Fun fact, the general form with an area of N under the curve is t = (N-1)/W((N-1)/e)

  • @romanbykov5922
    @romanbykov5922 8 місяців тому +24

    that's what I thought right away when I saw the question :)

  • @acetylsalicylicacid
    @acetylsalicylicacid 8 місяців тому +6

    What an interesting problem! I could see things like this being used for many applications, like how long you need to drive to drive a certain displacement.

  • @ekut1922
    @ekut1922 8 місяців тому +183

    the fish function is kinda bad imo, you give away a medium fish and a small fish for a big fish but I personally find that since you have to eat the fish in one go or it'll go bad the m fish and s fish serve a better purpose for consumption and if you are collecting fish, I doubt you want to decrease the number of fish you have unless your tank is running out of space, but bigger fish generally need more space to be healthy so I wouldn't use this as a solution even then

  • @therealist9052
    @therealist9052 8 місяців тому +1

    Wow first real practical application of the Lambert W function I've ever seen that could come up in everyday calculus! Thanks so much!!

  • @kindacringengl
    @kindacringengl 8 місяців тому +3

    Hey bprp, I just wanna say a massive thank you for your videos, not only are they super entertaining for me but when I started watching them a couple years ago I had no idea what was going on, not about calculus, complex numbers or anything. But slowly I started picking things up and I started to basically get a online class from you, whilst being entertained with great content. Now that my curriculum is more lined up with your content and european style (IB by the way), I actually use the stuff you use a lot and it helps me get really good grades, so yeah sorry for the paragraph but thanks :)

  • @hellohabibi1
    @hellohabibi1 8 місяців тому +14

    For anyone wondering you can simplify the result like this:
    = e^(W(1/e) + 1)
    = e * e^W(1/e)
    = e * W(1/e) e^W(1/e) / W(1/e)
    = 1 / W(1/e)

    • @riccardomarino9786
      @riccardomarino9786 8 місяців тому +1

      I didn't understand why e*W(1/e)e^W(1/e)=1

    • @vinko8237
      @vinko8237 8 місяців тому +1

      I got the last result first ;)

    • @munkhjinbuyandelger
      @munkhjinbuyandelger 8 місяців тому +4

      @@riccardomarino9786 because, by definition, W(x)*e^W(x)=x. It is the true property of Lambert’s W function.

    • @sandyjr5225
      @sandyjr5225 7 місяців тому

      Even I got the last result first.

    • @dadoo6912
      @dadoo6912 2 місяці тому

      ​@@riccardomarino9786 by the definition of inverse functions f(f^-1(x)) = x
      if f(x) = x*e^x and f^-1(x) = W(x), then:
      x = f(f^-1(x)) = f^-1(x)*e^f^-1(x) = W(x)*e^W(x) -> W(x)*e^W(x) = x
      in this case we have e * W(1/e)*e^W(1/e) = e * 1/e = 1

  • @simonteo6414
    @simonteo6414 8 місяців тому +2

    Thanks to your videos I was actually able to solve this one on my own, never thought I would like math this much. Thank you for reigniting my interest in math :)

  • @samcruise2605
    @samcruise2605 2 місяці тому

    Integrals like this are so satisfying to solve, especially when the result is as elegant as 2! This video does an amazing job breaking down the steps clearly. I’ve been practicing similar integral problems, and SolutionInn has been super helpful for finding more examples to work through.

  • @nimunarin
    @nimunarin Місяць тому

    I am amazaed by this guy just evaluating e rised to an exponent accuretaly in his head, truly amazing

  • @sovietwizard1620
    @sovietwizard1620 7 місяців тому +1

    It's crazy how after watching so many of your videos, I can solve problems like these without any problem at all in a matter of seconds. Lambert W fuction really is so good afterall.

  • @moktamoni1373
    @moktamoni1373 7 місяців тому +1

    hey bro... Where are you from?? I'm from Bangladesh... Your videos are so helpful for me... Some days later my year final examination... I'm derepressed 😭😭.... Take my love ❤

    • @Samiul_007
      @Samiul_007 6 місяців тому

      He's from Taiwan

  • @cdkw2
    @cdkw2 8 місяців тому +1

    Such a common problem man, thank you for the solution.

  • @lazarusisaacng
    @lazarusisaacng 8 місяців тому +1

    Nice question and good answer, love it.❤

  • @KingGisInDaHouse
    @KingGisInDaHouse 8 місяців тому

    You can also use parametrical equations to integrate ln x
    y=t
    x=exp(t)
    $ydx
    dx=exp(t)*dt
    $t*exp(t)dt
    You don’t get out of integrating by parts but it’s a little more intuitive.

  • @Trust_the_brain
    @Trust_the_brain 8 місяців тому +5

    Fun fact, I actually did this question and t can also be write as the 1/LamberW(1/e), i feel like the method you used was harder than mine though but its fun to see that e^( LampbertW(1/e) + 1) is the same as 1/LamberW(1/e) seems like it wouldn't be true😀

    • @romanbykov5922
      @romanbykov5922 8 місяців тому

      perhaps it's just not nice to have W in the denominator :)

    • @XJWill1
      @XJWill1 8 місяців тому +3

      It is actually a simple consequence of the product log function being an inverse of
      f(x) = x * exp(x)
      In this channel, the most common usage is
      W( f(x) ) = x
      but you should not forget the other usage which is
      f( W(x) ) = x
      W(x) * exp( W(x) ) = x
      then you simply divide by W(x) to get
      exp( W(x) ) = x / W(x)
      and that identity can be applied to this problem to show the equality that you mention:
      exp( W(1/e) + 1) = e * exp( W(1/e) )
      exp( W(1/e) + 1) = e * (1/e) / W(1/e)
      exp( W(1/e) + 1) = 1 / W(1/e)

    • @Trust_the_brain
      @Trust_the_brain 8 місяців тому +1

      @@XJWill1 I used a more elementary friendly way to get to my result here it is : We have gotten to the point x ln(x) - x = 1, we use logarithm rules and expand the x to ln(e^x) now we get ln(x^x) - ln(e^x) = 1 lograithm rules: ln(x^x/e^x) = 1 take out the ln, we get x^x / e^x = e, now take denominator to the other side and multiply: x^x=e^x * e now take the root of x on both sides: x= e^(x/x) * e^(1/x) we get x= e^1 * e^(1/x) take the e^1 to the other side: x/e = e^(1/x) , now take the x to the other side: 1/e = 1/x * e^(1/x) as you might have noticed you can take the lambert W on both sides,
      W(1/e) = W(1/x * e^(1/x)) simplify W(1/e) = 1/x hence x= 1/W(1/e), yours is obviously much more simpler but as a highschooler myself, I find that this way is much simpler, though I see how your idea provides for a much better and simpler, and thanks for the proof btw.

    • @Trust_the_brain
      @Trust_the_brain 8 місяців тому

      @@romanbykov5922 Hmm not sure, 1/x is usually a pretty friendly function

  • @mjpledger
    @mjpledger 8 місяців тому

    Instead of using the lambert function and then solving numerically, you can just use recursion to solve numerically. Since t.lnt-t=1 then t=(1+t)/ln(t). Let ans equal some starting number e.g. 10 and then ans=(1+ans)/ln(ans) and repeat until it converges e.g. 4.777239, 3.694211, 3.592233,] 3.591122, 3.591121. It converges pretty quickly and easy to do on a calculator.

  • @sumedh-girish
    @sumedh-girish 8 місяців тому +15

    Paused the video, tried it first, comes out approx 3.591. 1 / (Fish 1/e)
    Edit : Fixed typo

  • @General12th
    @General12th 8 місяців тому

    The W function is my favorite function I never learned about in a proper math class!

  • @abcd-m1n7w
    @abcd-m1n7w 8 місяців тому

    Evaluate the surface integral ∬SF⋅dS
    for the vector field F(x,y,z)=x^2i+y^3j−xzk, where S
    is the part of the paraboloid 0.6+1.1x^2+y^2−z=0
    that lies above the disk x^2+y^2≤1
    and has upward orientation

  • @AubreyForever
    @AubreyForever 8 місяців тому +2

    Can you do a clear video of the Lambert function for high school students? Thank you.

  • @andrec.2935
    @andrec.2935 8 місяців тому +3

    Gosto muito da condução dos seus vídeos, da forma como faz matematica.

  • @gribvkvadrate6233
    @gribvkvadrate6233 8 місяців тому +12

    please try this equation: e^i^x=x

    • @hellohabibi1
      @hellohabibi1 8 місяців тому +1

      You mean e^(ix) = x
      or e^(i^x) = x

    • @adb012
      @adb012 8 місяців тому

      @@hellohabibi1 ... As the OP wrote it it means the second.

    • @gribvkvadrate6233
      @gribvkvadrate6233 8 місяців тому

      ​@@hellohabibi1, the second one, the tower of powers

  • @farhansadik5423
    @farhansadik5423 8 місяців тому

    t can be further simplified to just 1/W(1/e). I still have not taken full calculus classes but I do love the lamber W function

  • @YanbekArt
    @YanbekArt 8 місяців тому +20

    I knew the answer was going to use Lambert W function the second I saw the problem)

    • @onetwo7191
      @onetwo7191 8 місяців тому +1

      How? I’m new to lambert W, how do you recognize it so early?

    • @staticchimera44
      @staticchimera44 8 місяців тому +2

      @@onetwo7191 It's a practice thing, kinda like how you can expect to solve a quadratic whenever powers of 2 are involved. The Lambert W function appears naturally in natural log and e problems, and since the integral of ln(x) is probably some weird product of natural logs and such, it's not a bad guess that the Lambert W function would come into play

    • @sweettoy3824
      @sweettoy3824 8 місяців тому

      I did the integral then used Newton-Raphson iteration to approximate t as 3.59, which is correct to 3 significant figures. I think that's more satisfying than using the W.

    • @the_nuwarrior
      @the_nuwarrior 8 місяців тому

      ​@@sweettoy3824W is an analitic function, sometimes is better to have one

  • @eve_the_eevee_rh
    @eve_the_eevee_rh 8 місяців тому

    Integration of lnx, by parts:
    u = lnx, u' = 1/x
    v' = 1, v = x
    2 = [uv - integration of u'v]
    2 = [xlnx - integration of 1]
    2 = [xlnx - x]
    Upper bound is t, lower bound is 1
    2 = tlnt - t - ln1 + 1
    2 = tlnt - t + 1
    1 = tlnt - t
    1 = t(lnt - 1)
    Iiii have no idea how to simplify and/or solve this

  • @darcash1738
    @darcash1738 8 місяців тому

    Dam I saw it from the thumbnail and thought we got to choose the lower bound too and had an answer since we could freely choose one
    Not my first Lamberto tho. I see ln, I know.
    Get integral and factor out a b to be nicer.
    b(lnb-1) = 1
    Now set up lambo by creating an e^ term. Then have it match what’s next to it by multiplying e^-1.
    e^(lnb) (lnb-1) = 1
    e^(lnb-1) (lnb-1) = e^-1
    Lambo:
    lnb-1 = W(e^-1)
    Finish:
    b = e^[W(e^-1)+1]

  • @neilg2256
    @neilg2256 8 місяців тому +1

    The result can be simplified to 1/W(1/e)

  • @TheFastProgrammer
    @TheFastProgrammer 7 місяців тому

    the lambert w function is bprp's favorite math concept

  • @idjles
    @idjles 8 місяців тому +12

    I guarantee the answer uses Lamdba W function!!

    • @DotDotEight
      @DotDotEight 8 місяців тому

      you mena lambert?

    • @sowndolphin5386
      @sowndolphin5386 8 місяців тому

      you mean mean?​@@DotDotEight

    • @DotDotEight
      @DotDotEight 8 місяців тому

      @@sowndolphin5386 yes my bad, i didnt notice that typo

  • @joyneelrocks
    @joyneelrocks 7 місяців тому +1

    Whenever I see problems that use the Lambert's W Function, I just say, nah too lazy, and end up using the Newton-Raphson Method 😂😂

  • @MichaelRothwell1
    @MichaelRothwell1 8 місяців тому +1

    My solution was pretty similar to that in the video, but I put the answer in a neater form (as some others have in their comments)
    ∫₁ˣln t dt=[t(ln t-1)]₁ˣ (using integration by parts)
    =x(ln x-1)-1(0-1)
    =x(ln x-1)+1
    So we need
    x(ln x-1)+1=2
    x(ln x-1)=1
    x(ln x-ln e)=1
    x ln(x/e)=1
    (x/e)ln(x/e)=1/e
    ln(x/e) e^[ln(x/e)]=1/e
    So (as 1/e>0) there is a unique real solution, which is
    ln(x/e)=W₀(1/e)
    x/e=e^W₀(1/e) [⇒x=e^[W₀(1/e)+1] ]
    But W₀(a)e^W₀(a)=a, so e^W₀(a)=a/W₀(a)
    So x/e=(1/e)/W₀(1/e)
    x=1/W₀(1/e).

  • @arashsoleimany4688
    @arashsoleimany4688 8 місяців тому

    plz make a video and explain a simple solution for Morley's theorem.🙏

  • @alexandermorozov2248
    @alexandermorozov2248 8 місяців тому

    Если использовать формулы для функции Ламберта, то ответ можно упростить:
    t=e^(1+W(1/e))=e*e^W(1/e)=e*(1/e)*1/W(1/e)=1/W(1/e)
    Получаем: t=1/W(1/e)
    😜

    • @alexandermorozov2248
      @alexandermorozov2248 8 місяців тому

      Здесь использовали формулу: e^W(x)=x/W(x)

  • @magnusmalmborn8665
    @magnusmalmborn8665 7 місяців тому

    Could you use series expansion of ln(x) instead of W?

  • @identify3195
    @identify3195 8 місяців тому +9

    i dont know about W function cuz i am in high school . i tried and got t should be between 3 and 4

  • @MohamedBenbrahim-u9m
    @MohamedBenbrahim-u9m 7 місяців тому

    Integral entre 0and1(-ln(x))^1/2

  • @dadoo6912
    @dadoo6912 2 місяці тому

    this answer actually nicely simplifies to 1/W(1/e)! (not factorial, just excited)

  • @jackkalver4644
    @jackkalver4644 8 місяців тому

    I got the solution, but I had trouble checking it.

  • @TanmaY_TalK
    @TanmaY_TalK 8 місяців тому +14

    Lambert W function ❎
    bprp's fish function ✅
    😊

  • @janeknowakowski5732
    @janeknowakowski5732 8 місяців тому +3

    You can put the answer in an alternate form as follows: t=1/W(1/e), which looks better in my opinion.

  • @sarv1494
    @sarv1494 8 місяців тому +1

    X = e^(W(3/e) + 1)

    • @hellohabibi1
      @hellohabibi1 8 місяців тому

      no

    • @sarv1494
      @sarv1494 8 місяців тому

      @mhm6421 i saw end of the video, i got it wrong sorry

  • @mribang9128
    @mribang9128 8 місяців тому

    hey bprp, could you try making a vid about tetralog someday? I wld appreciate if you do.

  • @scottleung9587
    @scottleung9587 8 місяців тому

    Nice!

  • @user232-sbydse
    @user232-sbydse 8 місяців тому

    Is there any way to expand ( a+b+c+d)^7

    • @azzteke
      @azzteke 8 місяців тому

      Troll question!

  • @TerenceTao-w1i
    @TerenceTao-w1i 7 місяців тому

    Try this insanely hard integral :
    Integral between 0 and pi/2 of tan(x)^(1/(x^x))

  • @KavinKesav
    @KavinKesav 8 місяців тому

    Bro plz try this d/dx(log base x of n)

  • @Samiul_007
    @Samiul_007 6 місяців тому

    Can you solve for y?
    x = log(base b) of [ (W(y' /lnb)) /lna ]

  • @0x_min
    @0x_min 4 місяці тому

    normal person : W(xe^x) = x
    bprp : W(🐟e^🐟) = 🐟

  • @MathAdam
    @MathAdam 8 місяців тому +1

    Just checking in to see how you pronounce ln x.

  • @Engy_Wuck
    @Engy_Wuck 8 місяців тому

    W still feels like cheating. Or "here magic happens".

  • @martinb.3997
    @martinb.3997 8 місяців тому

    I've even asked WolframAlpha this question, but it seems to bug out and ask me to reask. When I formulate it another way, it just shows me a numeral approximation but nothing else. Could you try and solve it, please? Thank you!
    x^x^x = 2

  • @EyeSooGuy
    @EyeSooGuy 8 місяців тому

    Hey Steve! Show us a HARD analysis problem - at the 899 (end of PhD or even postdoc) level. 😈

  • @mangalesh7936
    @mangalesh7936 8 місяців тому

    Though I know how to solve this I came to see because to see bprp's Lambert fish function. 😅

  • @IlyesBenahmed-vf6gi
    @IlyesBenahmed-vf6gi 7 місяців тому

    Try this very difficult integral : ∫_0 ^(pi/2) tan(x)^(1/x) dx.
    So you want a VERY difficult question ? Solve the differential equation : ∫_0 ^pi ( ∫_y' ^y'' ) dx dt is y'''(e).

  • @a.b3203
    @a.b3203 8 місяців тому

    Lambert what?

  • @celsonguenha3845
    @celsonguenha3845 8 місяців тому

    Your help please Integral of ((x^2 + sin x)/(x^2 +1))dx

  • @pkvlogs5078
    @pkvlogs5078 8 місяців тому +1

    Well did it after expanding logt upto t-1 or even upto of power 3 from there we can get an approx value 1+ (2)^1/2 instead using lambert transformation

  • @archangecamilien1879
    @archangecamilien1879 8 місяців тому

    I have to say, I don't remember what the antiderivative of ln(x) was...I suppose if it was that straightforward, lol, there wouldn't be a video about this...maybe it doesn't have a straightforward derivative?...I don't know, lol...

  • @lorenzopattaro3529
    @lorenzopattaro3529 8 місяців тому +5

    I don't think I've actually understood what is the W function

    • @Earthzooka
      @Earthzooka 8 місяців тому +7

      It's called Lambert W function, also known as the Product Log function. I'm not an expert on the topic myself, but I think of it as an inverse function of
      f(x) = xe^x

    • @Samir-zb3xk
      @Samir-zb3xk 8 місяців тому +7

      Its just a function we define as the inverse function of y=xe^x; simalar to how if we have y=e^x, its functional inverse is y=ln(x)
      This function allows us to solve equations that can't be solved using normal algebra techniques. Such as equations where we have a variable outside and inside an exponent or logarithm.

    • @Bayerwaldler
      @Bayerwaldler 8 місяців тому +3

      bprp has a couple of videos about the Lambert W function on his channel.

    • @lawrencejelsma8118
      @lawrencejelsma8118 8 місяців тому

      ​@@Bayerwaldler... He is incomplete. It is wrong to never evaluate W(x)s by calculator or computational for higher level Numerical Analysis Senior level University computer math courses. How did he find W(1/e) to get his approximate value of 3.59112? There are no lookup tables that will equal a log(x), ln(x), or trigonometry type equivalent table for x values.
      From Wikipedia the Lambert Function is a summation formula. W(x) = summation of n=1 to infinity [((-n)^(n-1))/(n!)](x)^n for |x| < 1/e. Wikipedia states outside this range the solution for 1/e

  • @usptact
    @usptact 8 місяців тому

    What if I want that area to be i?

  • @Micheal2009-u4o
    @Micheal2009-u4o 8 місяців тому

    can you please come to Iran someday? pleaaaaaaaaase

  • @josephnaylor
    @josephnaylor 8 місяців тому

    i tried it; my brain was hurting i was so angry but i got 3.5911223...

    • @josephnaylor
      @josephnaylor 8 місяців тому

      I don't know the relationship between this number and e or ln

  • @prakashhuilgol6445
    @prakashhuilgol6445 8 місяців тому

    Please make a detailed video on fields medal

  • @mrpineapple7666
    @mrpineapple7666 8 місяців тому +1

    I am the first one commenting on your video

  • @tommasotiberi5666
    @tommasotiberi5666 7 місяців тому

    Math for fun fact: integral of ln(x) from 0 to 1 equals -1

  • @bunthornpgoneshop6603
    @bunthornpgoneshop6603 8 місяців тому

    Can you prove that why
    (-)(+)=-
    (-)(-)=+

  • @GurmesaAmeni
    @GurmesaAmeni 8 місяців тому

    Please Make a video with a youngest an and famous mathematician and physician subbrno isaac bari

    • @azzteke
      @azzteke 8 місяців тому

      Troll, go home

  • @starGirl-dl1rx
    @starGirl-dl1rx 8 місяців тому

    The first one to comment on! 🕶

  • @leonardobarrera2816
    @leonardobarrera2816 8 місяців тому +3

    Stop making easy exercices, I feel that I am good at math

  • @rahulmatrix6174
    @rahulmatrix6174 8 місяців тому

    B = (84 - A)/(1 + A) (A and B both are positive integers. A, B > 1 ) then find the value of AB.

  • @white_145
    @white_145 8 місяців тому

    I dont understand the W function, can someone explain? It doesnt seem to give any information at all. Why not just invent some function K so that t = K(2)?

  • @FulltimeSlacker
    @FulltimeSlacker 8 місяців тому

    I think i'm first ?

  • @technopanipuri3054
    @technopanipuri3054 8 місяців тому

    I am the 300th viewer

  • @penguin3555
    @penguin3555 8 місяців тому

    first

  • @L17_8
    @L17_8 8 місяців тому +1

    Jesus loves you ❤️ Please repent and turn to Him and receive Salvation before it's too late. The end times written about in the Bible are already happening in the world. Jesus is the son of God and He died for our sins on the cross and God raised Him from the dead on the third day. Jesus is waiting for you with open arms but time is running out. Please repent and turn to Him before it is too late. Accept Jesus into your heart and invite Him to be Lord and Saviour of your life and confess and believe that Jesus is Lord, that He died for your sins on the cross and that God raised Him from the dead. Confess that you are a sinner in need of God's Grace and ask God to forgive you for all your sins through Jesus.
    Jesus loves you. Nothing can compare to how He loves you. When He hung on that cross, He thought of you. As they tore open His back, He thought of your prayer time with Him. As the thorns dug into His head, He thought of you spending time reading the Bible. As the spears went into His side, He imagined embracing you in heaven. Please repent and turn to Jesus now before it's too late. He is waiting for you with open arms but time is running out.

    • @fugcat
      @fugcat 8 місяців тому +7

      jesus touched me when i was 6

    • @Michael-sb8jf
      @Michael-sb8jf 8 місяців тому +4

      Odin said I can go to Valhalla

    • @obonyxiam
      @obonyxiam 8 місяців тому +1

      you lot have been saying the world will end any day now for almost 2000 years

    • @bjornfeuerbacher5514
      @bjornfeuerbacher5514 8 місяців тому

      @@jackwoods7070 So what? Quoting from a book that is more than 2000 years old and was written by ignorant people proves nothing.

    • @artsmith1347
      @artsmith1347 8 місяців тому

      @@bjornfeuerbacher5514 Why do you say they were ignorant? Have you achieved omniscience, so no one will ever be able to say you were ignorant?

  • @alexandermorozov2248
    @alexandermorozov2248 8 місяців тому

    Нашёл t≈3.5911215, решал через функцию Ламберта W(x).