I Solved A Polynomial Equation

Поділитися
Вставка
  • Опубліковано 14 січ 2025

КОМЕНТАРІ • 15

  • @rickdesper
    @rickdesper Рік тому

    It's immediate that P must be linear: p(y) = ay + b. So P(x^2) = a x^2 + b, and P(P(x^2) + 1) = a[P(x^2) + 1] + b = aP(x^2) + a + b = a^2x^2 + ab + a + b. a = 3, b = 2.

  • @Blaqjaqshellaq
    @Blaqjaqshellaq Рік тому

    Using x^2 as a variable is a red herring: you could just as well say P[P(t)+1]=9*t + 11 for all (non-negative?) t.

  • @scottleung9587
    @scottleung9587 Рік тому

    Got 'em both!

  • @waiphyoemg1668
    @waiphyoemg1668 Рік тому

    Hi mr.syber, can u pls help me solve, from l.h.s.
    If alpha + beta + gamma = 180 deg show that cos alpha/2 + cos(beta/2) + cos(gamma/2) = 4cos((beta + gamma)/4) * cos((alpha + gamma)/4) * cos((alpha + beta)/4)

    • @Aymen-bt1ly
      @Aymen-bt1ly Рік тому +1

      yes Ican help you

    • @waiphyoemg1668
      @waiphyoemg1668 Рік тому

      @@Aymen-bt1ly Thanks. I am waiting for ur reply, i can solve from right side, but from left side, it is difficult to prove.

    • @Aymen-bt1ly
      @Aymen-bt1ly Рік тому

      Dear@@waiphyoemg1668
      Please order the steps

  • @lassikokkonen5618
    @lassikokkonen5618 Рік тому

    Yay! I solved this in 3 minutes by myself.

  • @kassuskassus6263
    @kassuskassus6263 Рік тому

    Yessssss !!!!

  • @giuseppemalaguti435
    @giuseppemalaguti435 Рік тому +1

    P(x)=3x+2...P(x)=-3x-7....mah??

  • @alextang4688
    @alextang4688 Рік тому

    We can sub y=x*2 to simplify the problem. 😋😋😋😋😋😋

  • @broytingaravsol
    @broytingaravsol Рік тому

    easy

  • @JohnSmith-mz7dh
    @JohnSmith-mz7dh Рік тому

    Ok, what I did was differentiated. I got that P’(P(x^2)+1)(P’(x^2)2x)=18x
    This means that P’(P(x^2)+1)P’(x^2)=9
    We can see that P’(x)=m, where m is some number. We can see this since p’(p(x^2)+1)=c0+c1x…cnx^n.
    and
    p’(x^2)=d0+d1x…dnx^k
    When we multiply those two together, we see that all have x terms except d0c0 which are actually the same value m.
    This must therefore mean c1…cn and d1…dn =0. So p’(x)=m
    We can solve for m immediately
    m^2=9, so m=3 or -3
    We can solve for c by letting x=0 in our original equation.
    P(P(0)+1)=11.
    m(c+1)+c=0. We get that…
    c=-7 when m=-3, and c=2 when m=3. We therefore have
    P(x)=3x+2, and P(x)=-3x-7