Converting from Cartesian to Parametric Form (How to) - Algebra Tips

Поділитися
Вставка
  • Опубліковано 31 січ 2025

КОМЕНТАРІ • 38

  • @stas27072000
    @stas27072000 7 років тому +4

    You sir deserve a nobel prize

  • @lding53
    @lding53 8 років тому +10

    Thank you so much! This helped me a ton and now I can finish my math homework :)

  • @21adsyeshwanths.25
    @21adsyeshwanths.25 3 роки тому

    i was really starving for this sum , thank you bro

  • @Kittad
    @Kittad 8 років тому +1

    THANK YOU SOO MUCH
    only found single video for this

  • @ayanoaman3179
    @ayanoaman3179 10 місяців тому

    had to look for this topic because my calculator doesn't graph relations, only functions, Thank you

  • @ralphedouard4580
    @ralphedouard4580 10 років тому +14

    I too think it would be better to make x=4cost.

  • @mishisoci
    @mishisoci 9 років тому +2

    This is great, but what is the domain for parameter t?

  • @pratyaya4032
    @pratyaya4032 3 роки тому +1

    For x²+y²=16, does it matter if the parametric equation of x is, x=4cost instead of x=4sint?

    • @ayushbisht6756
      @ayushbisht6756 3 роки тому

      If you want to trace it clockwise then sin otherwise cos

    • @asterism343
      @asterism343 2 роки тому

      @@ayushbisht6756 please explain what you mean by this

  • @HarryMcKenzieTV
    @HarryMcKenzieTV 2 роки тому

    what about (x−x(za))2+(y−y(za))2=r2 ??? it has a z as well xd

  • @lukebiernbaum
    @lukebiernbaum 6 років тому

    nice video- quick and easy to understand

  • @101scholarz
    @101scholarz 10 років тому +8

    is there more than one solution to each one of these questions ???

  • @AhmedKhaledCH3
    @AhmedKhaledCH3 9 років тому

    Extremely helpful, thanks.

  • @anilkumarsharma8901
    @anilkumarsharma8901 Рік тому

    Parametric form for points in 2d space???

  • @moaazmahmoud5042
    @moaazmahmoud5042 6 років тому

    is there a way to convert
    x^2 + y^2 - 2y cosx = 0
    into parametric ?

    • @dalalaljazzaf8139
      @dalalaljazzaf8139 6 років тому

      did you find a way?

    • @glebalikhver1385
      @glebalikhver1385 5 років тому +3

      @@dalalaljazzaf8139 I know I'm (just a bit) late, but you know that (x^2)+(y^2)=1, so we can plug in 1 for that part of the equation, leaving us with 1-2ycos(theta)=0. Then, turn the "y" into rsin(theta), to get 1-2rsin(theta)cos(theta)=0. To get "r" on it's own, you must divide both sides by 1-sin(2theta)[as 2sin(theta)cos(theta) is our double- angle sin identity], but diving zero by any number yields 0, so you would get r=0, final answer. Again, sorry that this is late, but here ya go.

  • @RadicalRorey
    @RadicalRorey 11 років тому

    Why is x equal to 4 sin t? Shouldn't b equal to 4 cos t?

    • @hassaanasif8879
      @hassaanasif8879 10 років тому

      Doesn't matter...as long as one is sin and the other is cos.

    • @avatar098
      @avatar098 8 років тому +1

      In all reality, it doesn't matter. You can even shift the origin around if you wanted to and rotate the plane counter-clockwise 117 degrees. It's all just a matter of convenience :)
      Out of convention, we just relate the cosine function to the x-axis and the sine function to the y-axis. Again, out of convenience.

  • @Shkencetari
    @Shkencetari 10 років тому

    Thank you very much.

  • @revathylakshmanan6164
    @revathylakshmanan6164 4 роки тому

    Thanks 👍

  • @IrfanDoggar
    @IrfanDoggar 11 років тому

    i can't understand this because for example i want to convert cartesian equation of hyperbola " x²/a² - y²/b² = 1 " into its parametric equation x= aSecθ , y = bTanθ
    please someone help me about this

    • @dalalaljazzaf8139
      @dalalaljazzaf8139 6 років тому

      do you know how now? because i want to know

    • @kormosmate2
      @kormosmate2 5 років тому

      @@dalalaljazzaf8139 for a parabola you use sinh(x) and cosh(x) instead of sin and cos. Also why would you want to use sec and tan? Makes no sense.

  • @rudrap820
    @rudrap820 2 роки тому

    Tysm

  • @jumpinginjoy1880
    @jumpinginjoy1880 9 років тому

    how to solve : x^4 - y^4 -z^4 = 1

  • @bananamanjunior7575
    @bananamanjunior7575 2 роки тому

    There is actually a rational parametrization for the equation x^2+y^2= 16 it is [4(1-t^2)/(1+t^2), 8t/(1+t^2)]

  • @mryamfnouse5169
    @mryamfnouse5169 6 років тому +2

    Can someone tell me the answer
    What is the parametric eq. Of this cartesian one?
    X=3

  • @tonyl.1426
    @tonyl.1426 5 років тому

    x=rcos y=rsin

  • @Pedozzi
    @Pedozzi 4 роки тому

    1:15 what

    • @Kitsyfluff
      @Kitsyfluff 4 роки тому

      Sin is your X axis, Cos is your y axis. you want them to be controlled by t, so sin(t) and Cos(t). x and y are being squared, so therefore their resultant quantity needs to be squared.

    • @Pedozzi
      @Pedozzi 4 роки тому

      @@Kitsyfluff oh ok thank you

  • @eccesignumrex4482
    @eccesignumrex4482 8 років тому +1

    crap -