Every Euclidean Ring possess unity element 🔥

Поділитися
Вставка
  • Опубліковано 15 гру 2024

КОМЕНТАРІ • 10

  • @AbhiKumar-gp9fe
    @AbhiKumar-gp9fe 5 років тому +1

    Sir thanku ap bhut accha padhte ho

  • @shishirchaurasia35
    @shishirchaurasia35 4 роки тому

    Here you are assuming that R contains unity which kind of the defeats the purpose. Since (u) = (ru + nu ; r belongs to R and n belongs to Z). This is the definition of principal ideal. (u) = ru only when R is integral domain and contains unity. Since it is possible that u != ru for any element, that's why the definition of principal ideal contains ru + nu, so ru + nu = u for some r and n. By definition , Principal ideal generated by a is the smallest ideal containing a.

  • @muskanbhatia1254
    @muskanbhatia1254 6 років тому

    Ring of gaussian integers is an euclidean domain par video bana do

  • @reallifemathsbyanshuman9157
    @reallifemathsbyanshuman9157 6 років тому

    Sir aap lpp karao numerical nhi please aur sir real me b.sc Ka ek important serise banaye sabse jayada real me problam Hoti hai

    • @MathematicsAnalysis
      @MathematicsAnalysis  6 років тому

      Playlist dekhlo sare question available h

    • @reallifemathsbyanshuman9157
      @reallifemathsbyanshuman9157 6 років тому

      @@MathematicsAnalysis ok.limit me kuch proof aata hai problam Ka co nhi Katayama aur complex me limit continuity and diffrencibility nhi karaya