Can YOU Crack This Rational Equation Challenge? | Algebra

Поділитися
Вставка
  • Опубліковано 24 гру 2024

КОМЕНТАРІ •

  • @Quest3669
    @Quest3669 День тому +1

    X=( -7+-√13)/2; (-9+-√13)/2

  • @gregevgeni1864
    @gregevgeni1864 День тому +1

    x =-4 +(1±√13)/2 , x =-4 +(-1±√13)/2.
    Obviously x ≠ -4 .
    The given equation is equivalent to
    {[(x+4)+2]•[2(x+4)-3]/(x+4)}⁴ +
    + {[(x+4)-2]•[2(x+4)+3]/(x+4)}⁴ = 82 (1).
    Let t = x+4 (*) and the (1) write as
    [(t+2)(2t-3)/t]⁴ +[(t-2)(2t+3)/t]⁴=82 [(2t²+t-6)/t]⁴ +[(2t²-t-6)/t]⁴=82
    [2(t-3/t)+1]⁴ +[2(t-3/t)-1]⁴=82 (2).
    Let u = 2(t-3/t) (**)and the (2) write as
    (u+1)⁴ +(u-1)⁴= 82 u⁴+6u²-40=0
    (u²+10)(u²-4)=0 => u =±2 .
    From (**) =>
    case one
    2(t-3/t)=2 => t-3/t=1 =>t²-t-3=0=>
    t =(1±√13)/2 and x = (1±√13)/2 -4 due to (*)
    case two
    2(t-3/t)=-2 => t-3/t=-1 => t²+t-3=0 => t =(-1±√13)/2 and x=(-1±√13)/2 -4 due to (*) .

  • @Chacal0152
    @Chacal0152 23 години тому

    x=a-4, a ≠ 0, [(a+2)(2a-3)]⁴+[(a-2)(2a+3)]⁴ = 82a⁴ = [2a²-6+a]⁴+[2a²-6-a]⁴ , b =2a²-6 = ka =>
    (k+1)⁴+(k-1)⁴ = 82 = 2(k⁴+6k²+1) => k⁴+6k²-40 = 0 = (k²+10)(k²-4) => k² = 4 => k = ±2 =>
    2a²±2a -6 = 0 = 2(a²±a-3) => a =½(±1±V13) => x = ½(±1±V13)-4 = ½(-8±1±V13)

  • @潘博宇-k4l
    @潘博宇-k4l День тому

    X1=[(13)^(1/2)-7]/2, X2=[-(13)^(1/2)-7]/2, X3=[(13)^(1/2)-9]/2, X4=[-(13)^(1/2)-9]/2.

  • @ManojkantSamal
    @ManojkantSamal День тому

    ^= read as to the power
    *=read as square root
    Let R={(x+6)(2x+5)}/(x/4)
    A={(x+2)(2x+11)}/(x+4)
    As per question
    R^4+A^4=82.....eqn1
    Now explain R
    {(X+6)(2x+5)}/(x+4)
    ={2x^2+5x+12x+30}/(x+4)
    =(2x^2+17x+30)/(x+4)
    Explain A
    {(X+2)(2x+11)}/(x+4)
    =(2x^2+11x+4x+22)/(x+4)
    =(2x^2+15x+22)/(x+4)
    Now R-A
    ={2x^2+17x+30-2x^2-15x-22}/(x-4)
    =(2x+8)/(x+4)
    =2(x+4)/(x+4)
    =2
    So,
    R-A=2...eqn2
    We know that
    (R-A)^4=R^4+A^4+(6R^2A^2)-4RA(R^2+A^2)
    SO,
    2^4=82+(6R^2A^2)-4RA{(R-A)^2+2RA}
    SO,
    16=82+(6R^2A^2)-4RA(4-2RA)
    16-82=(6R^2A^2)-16RA-(8R^2A^2)
    -66=(-2R^2A^2)-16RA
    -66=-{(2R^2A^2)+16RA}
    Let RA=L
    SO,
    -66=-(2L^2+16L)
    SO,
    2L^2+16L=66
    2L^2+16L-66=0
    2L^2+22L-6L-66=0
    2L(L+11)-6(L+11)=0
    (2L-6)(L+11)=0
    2L-6=0 or L+11=0
    2L=6 or L=(-11)
    L=6/2=3 or L=(-11)
    Let's take L=3
    So, RA=3.......eqn3
    (R+A)^2=(R-A)^2+4RA
    =(2^2)+(4×3)
    =4+12=16
    So,
    R+A=*16=4...eqn4
    Add eqn2+eqn4
    R-L+R+L=2+4
    2R=6
    R=6/2=3
    L=4-R=4-3=1
    Now L=1
    So,
    {(X+2)(2x+11)}/(x/4)=1
    (X+2)(2x+11)=x+4
    2x^2+15x+22=x+4
    2x^2+15x-x+22-4=0
    2x^2+14x+18=0
    2(x^2+7x+9)=0
    X^2+7x+9=0
    Here a=1, b=7,c=9
    D=b^2-4acc
    =(7^2)-(4×1×9)
    =49-36=13
    *D=*13
    X=(-b±*D)/2a
    ={(-7)±*13)/2
    Hence x={(-7)±*13}/2
    If we take L=(-11)
    So, RA=(-11)
    (R+A=)*{(2^2)-44}
    =*(4-44)=*(-40)=2.*10i... Eqn5
    Eqn2 +eqn5
    R-A+R+A=2+(2.*10i)
    2R=2(1+*10i)
    R=1+*10i... Which provide a complex solution

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 14 годин тому

    (x^4+24)(8x^4+20)/{x^4+16{+(x^4+8)(8x^4+44)/{x^4+16}={24x^4+28x^4}/16x^4 {8x^4+52x^4}/16x^4={52x^8/16x^4+60x^8/16x^4}=112x^16/32x^8=311x^2 3x^2(x ➖ 3x+2).2^42 2^21 2^3^7 2^3^3^4 2^3^3^2^2 1^1^3^1^2 32(x ➖ 3x+2).

  • @HulkarxonQodirova
    @HulkarxonQodirova 19 годин тому

    It is very easy 😂😂