sqrt(a+bi), how to get the square roots of a complex number

Поділитися
Вставка
  • Опубліковано 15 гру 2024

КОМЕНТАРІ • 101

  • @robinson5923
    @robinson5923 2 роки тому +114

    At last I found the hidden algebra channel after all these challenges and many equation I am finally here for the great teacher's techniques to solve problems!

  • @platt-bs
    @platt-bs 2 роки тому +23

    You could also just convert into polar coordinates which gives you: sqrt(r)sqrt(e^(ia)) -> sqrt(r)e^(ia/2) where r is the radius and a the angle.
    You can then generalize this even more and get the formula:
    nth-root(a+bi) = nth-root(r)e^(i(a+2kπ)/n) in which k is an integer

    • @anishkrishnan9698
      @anishkrishnan9698 Рік тому

      I think this is cleaner than getting a form with an arctangent involved, but yes polar is much simpler and easier to deal with exponents

  • @deepguy2
    @deepguy2 2 роки тому +19

    Fabulous teacher, got me loving math again!

  • @abrahammekonnen
    @abrahammekonnen 2 роки тому +6

    These "just x" channels are really cool. You always go into more detail on some things that we might not have seen in a typical "x" course.

  • @Agent_B0771E
    @Agent_B0771E 2 роки тому +15

    Technically x≠0 for b=0 since y=b/(2x) which makes sense since for b=0 you would need y=0 i guess

    • @eu7059
      @eu7059 2 роки тому +3

      No, it depends on the value of a. If a

  • @stevenwilson5556
    @stevenwilson5556 2 роки тому +5

    7:51 "…and hopefully everything is clear." Crystal.

  • @dulot2001
    @dulot2001 2 роки тому +9

    Using the the modulus of a+bi, you get three equations :
    x²+y²=sqrt(a²+b²)
    x²-y²=a
    2xy=b
    the two first equations give us : x² =1/2(a+sqrt(a²+b²))and y²=1/2(a-sqrt(a²+b²)) and you can conclude with the sign of b.

    • @Etz_Chayim
      @Etz_Chayim 2 роки тому +1

      nice!!

    • @rmlu9767
      @rmlu9767 2 роки тому

      I don't see clear the first equation: is the modulus of a square the square of the modulus?

    • @dulot2001
      @dulot2001 2 роки тому +3

      @@rmlu9767
      (x+iy)²=a+ib
      Thus : |x+iy|²=|a+ib|
      This gives : x²+y²=sqrt(a²+b²)
      Is it more clear?

    • @rmlu9767
      @rmlu9767 2 роки тому +1

      @@dulot2001 Yes, I completely forgot that property. Thank you.

  • @mrlordsaif5708
    @mrlordsaif5708 2 роки тому +17

    Can't we convert the complex number into trigonometric form and apply De Moivres theorem?

    • @AayushSrivastava0307
      @AayushSrivastava0307 2 роки тому +3

      not all numbers can be converted to trig forms by, we can only do multiples of 15 and try to use sin(a+b) formulas but much easier using this formula

    • @kevinm1317
      @kevinm1317 2 роки тому

      @@AayushSrivastava0307 You can use half angle formula, it should be equivalent

  • @camgere
    @camgere 2 роки тому +22

    Why not just convert to polar coordinates? (a + bi)^(1/2) = ((a^2 + b^2)e^itaninv(b/a))^(1/2) = +/- (a^2 + b^2)^(1/4)e^i(taninv(b/a))/2

    • @star_ms
      @star_ms 2 роки тому +11

      We're assuming that we don't have a calculator or the brainpower to work out an inverse tangent. After all, there's no fun in that.

    • @he-man4076
      @he-man4076 2 роки тому +2

      Computing square roots are much easier than computing complex exponentials and inverse tangents.

    • @purewaterruler
      @purewaterruler 2 роки тому

      @@he-man4076 but you can easily convert that to square roots bc a complex exponential is just sin and cos
      So we have an angle equal to the inverse tangent, and that angle is inputed into sin and cos, and we can easily find the value of that just by using triangles.

  • @plislegalineu3005
    @plislegalineu3005 2 роки тому +9

    If b=0 it's y that is = 0, just plug in b = 0 in both of these and y will reduce to 0

    • @koenmazereeuw4672
      @koenmazereeuw4672 2 роки тому +7

      if b = 0 and a is negative, y will not be 0 since sqrt(a) would be a complex number. x will be 0 though.

    • @plislegalineu3005
      @plislegalineu3005 2 роки тому

      @@koenmazereeuw4672 but x and y are defined to be real

    • @DeJay7
      @DeJay7 2 роки тому +2

      @@plislegalineu3005 y is the coefficient of i, still real

  • @smh9859
    @smh9859 Рік тому +1

    Didn't really understand why we have to put only plus on 3:07
    If sqrt(16(a^2+b^2)) is greater than 4a it's ok? Isn't it

    • @bprpmathbasics
      @bprpmathbasics  Рік тому

      If sqrt(16(a^2+b^2))>4a, then 4a " - " sqrt(16(a^2+b^2)) would be negative, and x^2 can't end up with a negative because x is real

  • @owoLight
    @owoLight 2 роки тому +2

    woah another channel! glad i found this

  • @MathNotationsVids
    @MathNotationsVids 2 роки тому +1

    My first thought was to use polar or trig form: a+bi = re^(it) so by DeMoivre's, √(a+bi) = √r•e^(i•t/2) =
    √r(cos(t/2) + isin(t/2) or √r(cos((t/2)+π)+isin((t/2)+π)). Here r = √(a²+b²), cos(t/2)=
    ±√((1+cos t)/2), sin(t/2) = ±√( (1-cos t)/2). cos(t) = a/√(a²+b²)
    After simplification and accounting for ± signs, results are equivalent.

    • @grassytramtracks
      @grassytramtracks 6 місяців тому

      If the argument is a nice fraction of π, converting to modulus-argument form makes sense, but sometimes you'll get a horrible decimal for the argument

  • @XJWill1
    @XJWill1 2 роки тому +5

    And then there is the similar identity:
    sqrt(a + b) = (S + b / S) / sqrt(2)
    where S = sqrt( sqrt(a^2 - b^2) + a)
    It is not really a simplification (unless it is a denestable nested radical), but it is an interesting identity nonetheless. And for b = i * c , it can be used to derive the identity in the video.

    • @Firefly256
      @Firefly256 2 роки тому

      How does that simplification help at all? Also what’s this identity called?

    • @XJWill1
      @XJWill1 2 роки тому

      @@Firefly256 What simplification?

    • @Firefly256
      @Firefly256 2 роки тому

      @@XJWill1 “it is not really a simplification” so it kind of is a simplification but not really at the same time?

    • @XJWill1
      @XJWill1 2 роки тому

      @@Firefly256 Consider a = 2 and b = sqrt(3)

    • @Firefly256
      @Firefly256 2 роки тому

      @@XJWill1 I typed this in wolframalpha and it said this is not always true (a=-1, b=1/2). Is it only true when a and b are positive?
      Edit: I replaced a with |a| and b with |b| but it still says not always true, why?

  • @SyberMath
    @SyberMath 2 роки тому +1

    6:42 This is not andy! 😂😂

    • @SyberMath
      @SyberMath 2 роки тому

      @@bprpmathbasics hehe. looking forward to seeing you at the PREMIERE in about 3 hours...😉

    • @advaykumar9726
      @advaykumar9726 2 роки тому +1

      Hello

  • @user-wu8yq1rb9t
    @user-wu8yq1rb9t 2 роки тому +5

    It's my first comment in this channel!
    Congratulations to myself!
    ...
    *Thank you teacher For all of your efforts*
    I love you *bP🖋️rP🖍️* 💖

  • @holyshit922
    @holyshit922 2 роки тому +2

    It can be derived also from polar form

  • @meurdesoifphilippe5405
    @meurdesoifphilippe5405 Місяць тому

    There's a much easier way to solve (x+iy) ^2=a+ib using the absolute value : x^2-y^2 = a, x^2+y^2 = |x+iy|^2 = |a+ib|=sqrt(a^2+b^2),, solve this very easy linear system to get x^2 and y^2, finally use the sign of b to decide if x and y have the same sign or opposite.

  • @C0R0T890
    @C0R0T890 2 роки тому +1

    7:40 its only y equal to 0, x is the root of a

  • @chris-hj2qd
    @chris-hj2qd 2 роки тому +1

    Great work!!

  • @wesleysuen4140
    @wesleysuen4140 2 роки тому +2

    what about applying de moivre’s formula to the polar form of a+bi?

    • @shadow-ht5gk
      @shadow-ht5gk 2 роки тому +1

      That’s what I thought of as well, I think it’d be easier

    • @wesleysuen4140
      @wesleysuen4140 2 роки тому +1

      @@shadow-ht5gk I’ve done that in my newer video comment. It happens that the use of the quadratic formula involved in the video is basically the same as the use of half-angle formulae that I need. But my calculations reveal more precisely how the signs for the square roots should be considered.

  • @z4zuse
    @z4zuse 2 роки тому

    2:08 if b=0 and a

  • @georget8008
    @georget8008 2 роки тому +2

    Actually, if b=0, then y=0. The x might be 0 or non-0. In this case, the x value depends solely on a. Right?

  • @fouadhammout651
    @fouadhammout651 2 роки тому +1

    Saraha ma3andich zhar la f tssahib la f zwaj walit tangoul tawahad maynawad tawahda Matahmal.... '' ''

  • @trinityy-7
    @trinityy-7 2 роки тому

    how i would generally do it is convert it to polar form, then half the angle and root the distance

  • @wesleysuen4140
    @wesleysuen4140 2 роки тому

    Write z=a+bi=r*cis(w) where r=|z|=sqrt(a^2+b^2) and w=Arg(z) which here is restricted to lie in (-pi, pi].
    Then, by de Moivre’s formula, the two distinct square roots of z are given by:
    z_1=sqrt(r)*cis(w/2) and
    z_2=sqrt(r)*cis(pi+w/2)=-z_1,
    where w/2 lies in (-pi/2, pi/2].
    Write r=sqrt(a^2+b^2), c=cos(w)=a/r, s=sin(w)=b/r.
    cos(w/2)=sqrt((1+c)/2)
    =sqrt((r+a)/(2r)), which is always nonnegative;
    sin(w/2)=sgn(b)*sqrt((1-c)/2)
    =sgn(b)*sqrt((r-a)/(2r))
    So the square roots of z are:
    +/-[sqrt((r+a)/2)+sgn(b)*sqrt((r-a)/2)*i].

  • @star_ms
    @star_ms 2 роки тому

    I like how the modulus of the original number comes into play. Maybe this has some nice geometric visualisation?

    • @reeeeeplease1178
      @reeeeeplease1178 2 роки тому +1

      Converting to polar coordinates shows how
      Taking the sqrt halves the angle to the x axis and square roots the modulus

  • @booma2
    @booma2 2 місяці тому

    what about \sqrt(z^2)? Is it always equal to z that is \sqrt{z^2}=z and it can be -z?

  • @mohammadhuzaifkhan7828
    @mohammadhuzaifkhan7828 3 місяці тому

    Is there any formula I can use sir

  • @flog5634
    @flog5634 3 місяці тому

    Both graph y = sin x and y = sin^2 x are similar?

  • @abrahammekonnen
    @abrahammekonnen 2 роки тому

    3:39 you say that we only want the positive root because then when we try to get x it'll be real, but that's only if the discriminate is greater than -b.
    What you're saying is true in this case but generally it's not necessarily true.

    • @abrahammekonnen
      @abrahammekonnen 2 роки тому

      Or at least I think so lol

    • @jursamaj
      @jursamaj 2 роки тому

      That's nice, but this case is the case he's solving.

  • @raznocty
    @raznocty 5 місяців тому

    a²+b²=c²
    2X²=a+c=c+a
    2Y²=-a+c=c-a
    [a+i×(c²-a²)½]½=X+i×Y

  • @teelo12000
    @teelo12000 2 роки тому +2

    2:10 how to simplify: a = x^2 - (b^2 / 4x^2)
    cancel the x^2's
    a = 1 - b^2 / 4
    a = 1 - b^2 / 2^2
    cancel the ^2's
    a = 1 - b/2

    • @plislegalineu3005
      @plislegalineu3005 2 роки тому +3

      🤜😵

    • @HershO.
      @HershO. 2 роки тому +2

      I think I need some sleep after reading this

    • @star_ms
      @star_ms 2 роки тому +1

      I don't think that you can cancel the x^2's. Or the ^2's. Better than that, let's stop using the word 'cancel', since it's misleading.

    • @HershO.
      @HershO. 2 роки тому +2

      @@star_ms I think it's sarcasm lmao

    • @star_ms
      @star_ms 2 роки тому +1

      @@HershO. Math and sarcasm usually doesn't go together in most contexts, so I assumed it wasn't.

  • @aurelcoeur129
    @aurelcoeur129 2 роки тому

    the first thought coming to my mind after seing that minia consist in passed from algebra to exponential form to solve the problem

  • @officialalphabet
    @officialalphabet Рік тому

    Thx best math teacher now i can caculate fourth root of i and the sin of 22.5° and cos of 22.5°

  • @KasyapH
    @KasyapH 10 місяців тому

    Thank you so much tr plz do cube root of complex number

  • @criticalsu
    @criticalsu 2 роки тому +1

    The consequence of the formula is that the complex number will have two distinct root, hmm. Complex numbers sure are complex and they really defy my expectations.

    • @angeldude101
      @angeldude101 2 роки тому

      Positive real numbers already have 2 distinct square roots. We just usually pretend one of them doesn't exist unless we're solving a quadratic. Be glad you're not dealing with hypercomplex numbers like quaternions. In those cases there can be infinitely many square roots for certain values.
      For complex numbers, x² = y -> √y = ±x.
      But sometimes, i² = j², but ±i ≠ ±j.

  • @proprioio8986
    @proprioio8986 2 роки тому +1

    More complex numbers later on this channel?

  • @Michelle-ks3vv
    @Michelle-ks3vv 2 роки тому +1

    Me right now: 🧠n't
    Thank u so much! Its hard but your way of explaining makes it better🤗Your videos are great!!

  • @saharhaimyaccov4977
    @saharhaimyaccov4977 2 роки тому +22

    Sqrt(a²+b²) = |a+bi|

    • @jonnypei9137
      @jonnypei9137 2 роки тому

      @@antonis12gl48 i think they probably mean for the final expressions for x and y

    • @proloycodes
      @proloycodes 2 роки тому +1

      @@antonis12gl48 somebody has forgotten about || notation and complex numbers

    • @antonis12gl48
      @antonis12gl48 2 роки тому

      @@proloycodes You 're right, it means distance. I didn't see the i at the end. And I thought he meant sqrt(a^2 +b^2)= |a+b|. Sorry.

  • @jeffreystockdale8292
    @jeffreystockdale8292 2 роки тому

    Wow! Amazing!

  • @佐藤広-c4p
    @佐藤広-c4p 2 роки тому +2

    I'm always wondering. If b is an even number (i.e., b=2b'), x=[-b'±√{(b')^2-ac}]/a is the formula for solving quadratic equations, but I've never seen anything using in other videos of the same kind. I think this is easier and more convenient, but why? In this video, x^2=[2a+√{(-2a)^2-4*(-b^2)}/4, so it seems like there's not much difference, but if "a" of a(x^2)+bx+c=0 is 1, the denominator becomes 1 and feels very easy.

  • @INGEGabi0666-
    @INGEGabi0666- 2 роки тому

    I don't know English, but it isn't a problem, because the mathematics transcends worlds :)

  • @donwald3436
    @donwald3436 Місяць тому

    it's 2am why am I watching this lol.

  • @padla6304
    @padla6304 Місяць тому

    √(a+bi) = √z

  • @muuke852
    @muuke852 Рік тому

    But in the start, didnt you use (a * b)² = a² * b² ? I thought that doesnt apply for imaginary numbers! Because you have to half the angle? Did i miss something?

    • @esupton783
      @esupton783 4 місяці тому

      a and b are real numbers on their own, b is just the "size" of the imaginary component of the complex number z=a+bi

  • @MUJAHID96414
    @MUJAHID96414 2 роки тому +1

    I solved it

  • @chprod4303
    @chprod4303 Рік тому

    This is what makes me want to quit college week 1

  • @ahmslayer
    @ahmslayer 2 роки тому

    And there is me who said: sqrt a+bi=sqrt i
    So a+bi=i

  • @nevokrien95
    @nevokrien95 2 роки тому

    Its super easy, either use the exact sqme taylor seiries you would use to do sqrt in the first place.
    Or if you have q purely real calculator use qrchtqn to do q complex logarithem divide by two and raise e to it

  • @leonardobarrera2816
    @leonardobarrera2816 2 роки тому

    I don't undersand one thing, why you have b/2a, bacause it is -b/2a, it is a mistake

  • @kkmaheshwari568
    @kkmaheshwari568 2 роки тому

    Slightly difficult

  • @eliassintayehu3128
    @eliassintayehu3128 2 роки тому +1

    Maaaaaaaaaaaaaaa

  • @refnaldiazwirman2490
    @refnaldiazwirman2490 2 роки тому

    just geometry?

  • @sujalmaharjan7563
    @sujalmaharjan7563 2 роки тому

    Cube roots of a+bi using this method cannot be obtained. Prove me wrong.

  • @KunlunTan
    @KunlunTan 13 днів тому

    Again, you made the same mistake as you calculated Sqrt(i). You cannot take the square of sqrt(a + bi) and get two solutions from it because one of them is NOT the answer. Think about this number, sqrt(1 + 0i). Clearly, it has only one answer, which is 1. But using your formula for x and y, we get two answers, 1 and -1.
    Your work perfectly calculates the square roots of a + bi, but not sqrt(a + bi). They are two different things. The square roots of 1 are 1 and -1, but sqrt(1) != -1.

  • @plislegalineu3005
    @plislegalineu3005 2 роки тому +2

    first

  • @DrMerle-gw4wj
    @DrMerle-gw4wj Рік тому

    This is an unnecessary waste of time. Just put this all in polar coordinates.

  • @23.lebaotanphong13
    @23.lebaotanphong13 2 роки тому

    so you call this is hard ?????