Lambert W Taylor Series Expansion [ Lagrange Inversion Theorem ]

Поділитися
Вставка
  • Опубліковано 5 вер 2018
  • Merch :v - Merch :v - teespring.com/de/stores/papaf...
    Help me create more free content! =)
    / mathable
    Let us do something special today! =) We are going to use the agrange Inversion Theorem to find out a Power Series Representation for the Lambert W Function! I hope you are going to enjoy this treat! :)
    Twitter: / flammablemaths
    Facebook: / flammablemaths
    Visit my website! =)
    mathable.me/

КОМЕНТАРІ • 92

  • @atrimandal4324
    @atrimandal4324 5 років тому +74

    Bois - T Series
    Men - Pewdiepie
    Legends - Flammable Maths ❤️

  • @blackpenredpen
    @blackpenredpen 5 років тому +15

    Yay!

  • @weird407
    @weird407 5 років тому +20

    Doing maths: yes papa
    Proving theorem: yes papa
    Lying?: no papa
    don't kick me papa flammy

  • @jfr9964
    @jfr9964 5 років тому +55

    Now prove the Lagrange inversion theorem :D

    • @yarooborkowski5999
      @yarooborkowski5999 5 років тому +4

      Yes, would be very useful.

    • @arthurgames9610
      @arthurgames9610 4 роки тому +2

      Yea, I really need this I'm searching this proof for days and i haven't found it

    • @edskev7696
      @edskev7696 2 роки тому +3

      Maybe late, but here's a proof! You need to do a little work to get the expression used in the video, but gives the basic ideas.
      users.math.msu.edu/users/magyarp/Math880/Lagrange.pdf

  • @1Adamrpg
    @1Adamrpg 5 років тому +7

    Agreed with some other comments, briefly discussing the radius of convergence would've been nice. Since n^n grows much faster than n!, this expansion only works for small z. I think it's z < 1/e if I recall correctly

  • @treyforest2466
    @treyforest2466 5 років тому +15

    I’d be curious to know how this Taylor series deals with the fact that W(z) has two branches. Does the same polynomial somehow describe both branches, or just one of them?

  • @Soundillusions94xyz
    @Soundillusions94xyz 5 років тому +8

    "Welcome back to anow video" I love your accent and I love you. Now that my differential equations class started, I hope you keep the differential equations videos coming!

  • @quahntasy
    @quahntasy 5 років тому +21

    Two boards. Shlt is about to get serious

  • @Blackfir333
    @Blackfir333 5 років тому +30

    But why is it called the Lambert W function? A guy named Lambert just liked the letter W?

    • @WhattheHectogon
      @WhattheHectogon 5 років тому +6

      Should pronounce it Lambert Vvvvv function, cuz that's much more deutlich, obviously.

    • @ThePron8
      @ThePron8 5 років тому +7

      Maybe because "L" is often used for Laplace transform and Lagrangian:)

    • @10erlangga
      @10erlangga 5 років тому +14

      W for weed

    • @Koisheep
      @Koisheep 5 років тому +1

      It's a Kamen Rider W reference

    • @skylardeslypere9909
      @skylardeslypere9909 4 роки тому +1

      W for Wednesday my dude aaAaAAAaaAaaAAaaaAaaAaAaAAAHhhHhHHhHH

  • @samuelmarger9031
    @samuelmarger9031 5 років тому +4

    We might need to find its radius and interval of convergence. Maybe calculus stuffs, bprp can help!

  • @olimatthews5636
    @olimatthews5636 5 років тому +1

    ""It's bloody messy" 😂😂 thanks papa

  • @lukaskaufmann3178
    @lukaskaufmann3178 5 років тому +6

    ˋˋit falls a bit from the skyˋˋ

  • @pablojulianjimenezcano4362
    @pablojulianjimenezcano4362 5 років тому +3

    Lambert W function is the best function in the universe :V!!!!!!!

  • @xfcisco
    @xfcisco Рік тому

    this function is a big W.
    -- Labert

  • @willful759
    @willful759 5 років тому

    many thanks pappa

  • @kayeassy
    @kayeassy 5 років тому

    Yaaay papa finally uploaded it ..

  • @michaelempeigne3519
    @michaelempeigne3519 5 років тому +5

    Prove the Lagrange Inversion Theorem.

  • @NoNTr1v1aL
    @NoNTr1v1aL 5 років тому +3

    0:54 Mission failed. We'll get'em next time.

  • @TheUnorthodoxGears
    @TheUnorthodoxGears 5 років тому

    You seem like a chill guy... subbed

    • @Hexanitrobenzene
      @Hexanitrobenzene 5 років тому

      TheUnorthodoxGears
      Hm, for me he looks like an arrogant smart ass, but in a funny and likeable way :D

  • @sonialucy1
    @sonialucy1 Місяць тому

    MAKE MATHS GREAT AGAIN!

  • @mdorghammm
    @mdorghammm 5 років тому

    great video.

  • @subhagjain7983
    @subhagjain7983 5 років тому

    THE BOARD UNDER THE BOARD🤣🤣

  • @wildatakalamingan2635
    @wildatakalamingan2635 5 років тому

    Beautiful :)

  • @nemanjaberic6848
    @nemanjaberic6848 5 років тому

    Omega-Tau-Phi indeed, and well deserved. One of few physicists that can do proofs, is our Papa Flammy. Remember that those physicists are the ones that were the greatest.

    • @noamtashma2859
      @noamtashma2859 5 років тому +2

      So the mathematicians are the greatest physicists?

  • @mlguy8376
    @mlguy8376 5 років тому +3

    A really nice video - just one slight typo. For the series coefficients you define “g_n(z)” which should not be the case since you are taking the limit of the variable z (though you use x).

  • @sebastiian4002
    @sebastiian4002 5 років тому +1

    Flammy lamby!

  • @luisroman6745
    @luisroman6745 5 років тому

    I come for the math, I stay cause papa is one sexy boi.

  • @noahali-origamiandmore2050
    @noahali-origamiandmore2050 Рік тому +1

    How does this work with the fact that W(z) has infinitely many branches. This definition only gives the principal branch.

  • @sansamman4619
    @sansamman4619 5 років тому +2

    i got confused by the D^(n -1), thanks for showing the steps!

    • @sansamman4619
      @sansamman4619 5 років тому

      #wewantmore ummm.. i don't know I have no criticism but I want more.

    • @Hexanitrobenzene
      @Hexanitrobenzene 5 років тому

      San Samman
      Probably Papa Flammy's source was using this notation. That's usually a sign of advanced material. However, there is no need for operator notation here.

  • @haowu9903
    @haowu9903 5 років тому +1

    From which lecture in the university can I learn Lagrange inversion formula?

  • @AubreyForever
    @AubreyForever Місяць тому

    I wish he would slow down more for high school students watching this.

  • @harrygreen9804
    @harrygreen9804 5 років тому

    Hell yeah

    • @harrygreen9804
      @harrygreen9804 5 років тому

      Great video as always, I've been trying to find an inverse for the anti-derivative of the Maxwell-Boltzmann boi and couldn't find any worked examples of the Lagrange inversion theorem so this helps a lot

  • @TheBil1337
    @TheBil1337 5 років тому

    Automatic captioning at 8:10 - WTF I am gonna call BND you sneaky boi

  • @conanedojawa4538
    @conanedojawa4538 Рік тому +1

    what's the radius of the convergence of this series ?

  • @reinerwilhelms-tricarico344
    @reinerwilhelms-tricarico344 5 років тому

    It would really be nice if you could provide an hemdsärmeligen proof of Lagrange’s inversion theorem. ;-)

  • @marcioamaral7511
    @marcioamaral7511 5 років тому +4

    Could you make a video on Lagrange multipliers to find functions of several variables extrema?

  • @jarogniewborkowski5284
    @jarogniewborkowski5284 3 роки тому

    Please try to derive Lagrange Inversion Theorem in similar way.
    It is very interesting tool.
    Best regards

  • @akashnarayanan9750
    @akashnarayanan9750 5 років тому +1

    Hey papa flammy, not directly related to the video but I had a question. I know sometimes when you're solving your diff eqs and you have dy/dx = 2 or something, you integrate both sides with respect to x. You always say you can cancel out the dx's on the right if ur a physicist or you can introduce a proper substitution. What do you mean when you say a proper substitution?

    • @alcaz0r1
      @alcaz0r1 5 років тому +1

      When you use separation of variables you end up with and integral, lets call it I, that looks like
      I = integral f(y) dy/dx dx.
      Let F be an anti-derivative of f. Then
      F = integral f(y) dy ... dF/dy = f ... dF/dy dy/dx = f(y) dy/dx,
      and by the chain rule of differentiation
      dF/dy dy/dx
      is nothing but
      dF/dx.
      Therefore,
      I = integral dF/dx dx = F = integral f(y) dy

    • @Hexanitrobenzene
      @Hexanitrobenzene 5 років тому

      Akash Narayanan
      In a calculus book I learned from, it was proved that first order derivative, for ex. dy/dx, can be treated like a fraction, so canceling out dx is not an improper procedure.
      Higher order derivatives cannot be treated like fractions.

  • @michaelroberts1120
    @michaelroberts1120 5 років тому

    Fire Steinmeier! Flammy for President!

  • @ApplyEval
    @ApplyEval 5 років тому

    You have me hit mathematical climax with these series, papa.

  • @Koisheep
    @Koisheep 5 років тому +3

    It wpuld be great if someone sent you a featured video where the proof is explained *wink wink wonk

  • @lucasdepetris5896
    @lucasdepetris5896 5 років тому

    Hi, is it even possible to solve for x in 3^x+x^2-2=0 ?? Make a video plsss

    • @Hexanitrobenzene
      @Hexanitrobenzene 5 років тому

      Lucas Depetris
      It seems that the constant term causes a lot of trouble. A similar equation without it is solved in wiki :
      en.m.wikipedia.org/wiki/Lambert_W_function
      ,section "Solutions of equations", example 3. However, this method cannot be applied when constant term is present, because then square root cannot be extracted.
      Help, Papa ! :D

  • @zacharieetienne5784
    @zacharieetienne5784 5 років тому +1

    Lagrange...
    small people...
    small...

  • @cavver3523
    @cavver3523 5 років тому

    I still can't understand Taylor Functions... did you do a video about this?
    Also, what is that big D at 1:05?

    • @NoNTr1v1aL
      @NoNTr1v1aL 5 років тому +4

      That's mine.

    • @cavver3523
      @cavver3523 5 років тому

      Oh okay, thanks papa!

    • @cavver3523
      @cavver3523 5 років тому

      @@NoNTr1v1aL Lol

    • @cavver3523
      @cavver3523 5 років тому

      @@misotanniold787 okay, I got the idea. Now I have to elaborate on this argument! Thank you!

  • @nevokrien95
    @nevokrien95 5 років тому

    i tried it with just tayloer seiries and got y(c)+lnu(x-c) u is constent

    • @nevokrien95
      @nevokrien95 5 років тому

      sorry ln 1+u(x-c)

    • @nevokrien95
      @nevokrien95 5 років тому

      this is wrong double checked again (the mistake was f''=-f'^2) working on this for the 2nd time i got a recursive formula for the Taylor series of the inverse of x^s*e^x but its a monster containing the sum of the n previous number in the seiris multiplied by ns
      however it seems like it is diverging a lot so this makes this function weird never the less it is unalitic

  • @46pi26
    @46pi26 5 років тому +7

    I still want to see a proof of the Lagrange inversion theorem so that I don't have to keep using series reversions:/

    • @WhattheHectogon
      @WhattheHectogon 5 років тому +1

      Is 46 & pi the next version of that song?

    • @46pi26
      @46pi26 5 років тому +1

      @@WhattheHectogon Yeah it's gonna be on the new album

  • @maximiliankoch1156
    @maximiliankoch1156 5 років тому

    Challenge: Solve a^n+b^n=c making n the subject using lambert W-function :)

    • @Hexanitrobenzene
      @Hexanitrobenzene 5 років тому +1

      Maximilian Koch
      I assume you want a general solution for
      a^x+b^x=c,
      since n usually denotes natural numbers and this equation is not likely to have integer solutions.
      It seems that this equation requires other function to solve it, since there are no x'es not in the exponent.
      Let's see. We want the same base for exponential functions, say, a:
      b^x =[a^(log_a b)]^x = a^(x*log_a b) .
      Let's define a parameter p:
      p=log_a b=ln b/ln a .
      Our equation becomes
      a^x + a^(x*p)=c ->
      a^x + (a^x)^p=c .
      Let's change a variable :
      a^x=y -> y+y^p=c , y>0 .
      So, we get a polynomial-ish equation in terms of y - not polynomial, because p may not be integer. If we get y, x is just
      x=ln y/ln a, ln a=/=0, a=/=1.
      a=1 is a trivial case.
      What about p=ln b/ln a ? Let's explore the cases:
      p=0 -> ln b=0 -> b=1, trivial.
      p=1 -> ln b=ln a, b=a, trivial.
      p=2 - quadratic equation.
      p=3;4 - cubic and quartic equations. Algebraic solutions are known (wiki), but they are messy, especially for quartic.
      We can also solve p=l/m, where l,m=1;2;3;4. For example, p=3/4 :
      y^(3/4) + y=c
      ->[y^(1/4)]^3+[y^(1/4)]^4=c
      y^(1/4)=t, y=t^4
      ->t^3 + t^4=c
      If p

    • @Hexanitrobenzene
      @Hexanitrobenzene 5 років тому

      Maximilian Koch
      It seems that equation y^p +y=c can be solved by Lagrange inversion theorem. Here is solution to equation y^p - y=c :
      en.m.wikipedia.org/wiki/Lagrange_inversion_theorem
      ,Section "Example" . I guess that this equation can be turned to our form by using substitution y=(-1)^[1/(p-1)] *u, I extrapolate from article
      en.m.wikipedia.org/wiki/Bring_radical
      ,section "Normal forms", paragraph "Bring-Jerrard normal form".
      However, this substitution involves complex numbers in general, so... Dunno.

  • @vinitchauhan973
    @vinitchauhan973 5 років тому +1

    :")

  • @linuskelsey8295
    @linuskelsey8295 5 років тому +1

    do W(-π/2)

  • @AncientAncestor
    @AncientAncestor 5 років тому +2

    Give a proof of the error term in Simpsons Rule. I dare you!

    • @Hexanitrobenzene
      @Hexanitrobenzene 5 років тому +2

      AncientAncestor
      Who likes calculating errors ? They tend to be dull, messy and tedious...
      Now this theorem is something else ! I suspect that proving it requires some serious knowledge of theory of functions of complex variable...

    • @AncientAncestor
      @AncientAncestor 5 років тому +1

      @@Hexanitrobenzene Charity Livestream? Watching Papa Flammys slow descent into madness as the hours pass of him performing increasingly more tedious but absolutely essential calculations in order to prove an absolutely essesntial result in the field of numerical integration would probably be the best thing to ever happen to the internet.

  • @RAJSINGH-of9iy
    @RAJSINGH-of9iy 5 років тому

    Where are you studying????

    • @RAJSINGH-of9iy
      @RAJSINGH-of9iy 5 років тому

      Flammable Maths okk ty. You are doing a grt job, keep it up. U r doing graduation or msc???

  • @matthewstevens340
    @matthewstevens340 5 років тому

    So are we having an affair with the Lambert W function? I see through the lies

  • @PackSciences
    @PackSciences 5 років тому

    Proof of Lagrange Inversion Theorem:
    May y(x,b)= x + b*f(y),
    Near b = 0, we get the taylor expansion in b = 0:
    x + sum from k = 1 to infinity x^k / k! (partial^k / partial x^k) (y(x,0))
    (1)
    y(x,b) = x - b*f(y(x,b))
    partial y/partial x - 1 - b (partial f/partial y) (partial y/ partial b) = 0 means partial y/partial x (1-b*f'(y)) = 1
    partial y/partial b - f(y(x,b)) - b (partial f/partial y) (partial y/ partial b) 0 means partial y/partial b (1-b*f'(y)) = f(y)
    Therefore, partial y/partial b = f(y) partial y / partial x
    (2)
    Now we want to show that for all n >0, (partial^n y/partial ^n b) = (partial^n-1 / partial x^n-1) (f^n (y) partial y/partial x).
    partial^2 y/ partial b^2 = (partial/partial b) (partial/partial b) (y) = (partial/partial b) (f(y) partial y/partial x)) = (partial/partial x) (f^2(y) partial y/partial x)
    By recursion, we get the said 3rd step formula.
    (3)
    In (x,0), y=x.
    partial y/partial x = 1
    and partial^n/partial b^n (y(x,0)) = partial^n-1/partial x^n-1 (f^n(x)).
    By (1), we get the forth step:
    y = x + sum from k=1 to +infinity of b^k/k! (partial^k-1/partial x^k-1) f^k(x)
    (4)
    We have now proved the Lagrange Inversion theorem at x=0. A simple change of variable z=x+x_0 makes it in any real point.

  • @kingarvish4269
    @kingarvish4269 5 років тому

    :D

  • @TheHosti
    @TheHosti 5 років тому

    fiRsT11!!

  • @Riiisuu
    @Riiisuu 5 років тому +2

    Please no more lambert videos 😖 too much for me

    • @nejlaakyuz4025
      @nejlaakyuz4025 5 років тому +1

      More lambert, more lambert more lambert