Integrating Lambert W Function

Поділитися
Вставка
  • Опубліковано 9 лют 2025
  • In this video, I showed how to integrate Lambert W function using integration by parts and U-substitution. The process is quite similar to the one employed in integrating ln(x)
    Derivative of Lambert W Function
    • Derivative of Lambert ...
    D - I method of integration by parts
    • D I Method Integratio...

КОМЕНТАРІ • 91

  • @xizar0rg
    @xizar0rg Рік тому +46

    That is the cleanest in-use chalkboard I have ever seen.

    • @Arriyad1
      @Arriyad1 10 місяців тому

      And maybe he uses Hagoromo chalk.

  • @haniyasu8236
    @haniyasu8236 Рік тому +19

    Damn. The way you present is so smooth. I love it

  • @bazboy24
    @bazboy24 Рік тому +14

    You are a most gifted teacher

  • @pierotezen4272
    @pierotezen4272 Рік тому +16

    I just discovered this channel today, your explanations are very clear and is very obvious you have a real passion for math. Your content is amazing, please keep bringing these amazing videos

  • @brucewernick6542
    @brucewernick6542 14 днів тому +1

    This was very useful. Please do a follow up video on the GLOG function. GLOG seems to be related to LambertW but is more suited to a different class of problems. In particular, the Colebrook friction factor equation can be solved directly with the GLOG function.

    • @PrimeNewtons
      @PrimeNewtons  День тому

      I just read this comment today. I never heard of the GLOG function. I am currently reading up on it. I will make a video when I fully understand it. Thank you.

  • @Misteribel
    @Misteribel Рік тому +6

    11:49 "this is you, remember", Yes! It's me! I love how you are talking to me in this video 😅

  • @pablomandelo4311
    @pablomandelo4311 Рік тому +12

    Man, I love your videos. You got a talent for teaching

  • @strawberrycake8253
    @strawberrycake8253 Рік тому +4

    This was quite wholesome to watch! Keep it up man!

  • @DiabaLompoSouleymane
    @DiabaLompoSouleymane 6 місяців тому +1

    Mon cher ! Vous êtes vraiment très fort ! Et vos explications sont très claires ! Merci bcp !

  • @uggupuggu
    @uggupuggu Рік тому +22

    We can also use the fact that the integral of an inverse function f^-1 (x) =
    xf^-1(x) -F(f^-1(x)) + C
    in this case f(x) is xe^x and F(x) is xe^x-e^x
    that term at the end x/W(x) is the same as e^W(x)

  • @stefanriegel2963
    @stefanriegel2963 7 місяців тому +1

    Danke!

  • @mathiasarrua1207
    @mathiasarrua1207 Рік тому +4

    I LOVE YOUR VIDEOS MAN, THEY MAKE ME LOVE CALCULUS

  • @SirBeYou
    @SirBeYou Рік тому +9

    Bro got predicted, good video as always

  • @bpr214
    @bpr214 Рік тому +2

    You have impeccable handwriting.

  • @Amoeby
    @Amoeby Рік тому +16

    Is this an ASMR math or am I missing something?

  • @makramaarid6598
    @makramaarid6598 Рік тому +3

    I was amazed at myself when I saw that I was able to reach it before seeing the video, but I did not use changing the variable. I used the logic that I put that W(x) is the function that connects xeⁿ to x and not vice versa, and I put an integral for x, but with dxeⁿ

  • @atmonotes
    @atmonotes 6 місяців тому

    your math is very organized and concise! loved the integration by parts table. thanks!

  • @pekorasfuturehusband
    @pekorasfuturehusband Рік тому +4

    Just discovered this channel and I have to say I loved the way you explained this!
    I think a lot of students wouldn’t be as afraid of math if they had a professor like you, this is a marvelous integral 🙏🏻

  • @codigodesenior3995
    @codigodesenior3995 Рік тому +2

    i fell in love with your channel!

  • @faustobarbuto
    @faustobarbuto Рік тому +3

    Great video, thanks! Methinks I should've started with the dW(x)/dx video, though.

  • @paulmichaud7565
    @paulmichaud7565 6 місяців тому

    Me, at first: "Oh, no. This is going to be intimidating." Me, at the end: "Hey, that wasn't so bad, after all."
    That is good teaching.

  • @usernameisamyth
    @usernameisamyth Рік тому +3

    amazing explanation

  • @RogerLmao
    @RogerLmao Рік тому +2

    I loved the video, awesome!!!

  • @erichlf
    @erichlf 2 місяці тому +1

    I have a PhD in math and I've never seen a DI table. It isn't very different from what I learned, I just didn't learn to write it that way. I think if I ever taught again I would start by teaching the way I learned it, since it uses first principles, but then teach the DI table after the first test.

  • @anglaismoyen
    @anglaismoyen Рік тому +1

    The mad lad did it.

  • @niccolopaganinifranzliszt3556
    @niccolopaganinifranzliszt3556 Рік тому +4

    The integral of any inverse function:
    x*f-¹(x)-F(f-¹(x))+c ( f-¹(x) is the inverse function, F(x) is the antiderivative of f(x))
    The integral of xe^(x)=e^(x)(x-1)
    So the integral of w(x) is
    x*w(x)-e^(w(x))(w(x)-1)+c
    =x*w(x)-e^(w(x))*w(x)+e^(w(x))+c
    =x*w(x)-x+e^(w(x))+c

  • @DaMonster
    @DaMonster Рік тому +2

    Beautiful work 👍👍👍

  • @niloneto1608
    @niloneto1608 Рік тому +12

    Next video: Use the Lambert W function to show for which cases do we have x^y=y^x, when x isn't equal to y, for instance 2⁴=4² and √3^√27=√27^√3.
    Especially when fixing a value for one variable, like y=2, when the solutions are x=2, x=4, and x~=-23/30.

  • @jaimeduncan6167
    @jaimeduncan6167 Рік тому +1

    Great video veny clear and the enthusiasm is contagious. loved the music at the beginning (4:49): Is that African percussion?

  • @anotherelvis
    @anotherelvis Рік тому +3

    Great video

  • @nithinsirimanne2924
    @nithinsirimanne2924 День тому

    Underrated 🔥 🔥 ❤

  • @vanecrnacki3875
    @vanecrnacki3875 Рік тому +1

    I really like your videos,are you using Hagoromo chalk?The writing looks very smooth

  • @fortpile
    @fortpile Рік тому +2

    nice! Gotta sub

  • @renesperb
    @renesperb Рік тому +1

    The u-substituiton is a good idea! Another way would be to integrate by parts ∫1*W[x] dx = x*W[x] - ∫x*W'[x] dx and then rewrite W' .
    But your way is better.

  • @baselinesweb
    @baselinesweb 8 місяців тому

    Why does W(x)e^W(x) return x instead of W(x)? Thank you.

    • @martenjanderuiter5474
      @martenjanderuiter5474 Місяць тому

      Select y such that x=y*e^y. Then W(x) = W(y*e^y) = y by definition of the Lambert W function. So W(x) *e^W(x) =y*e^y. And that is equal to x by the selection.

  • @김상문-o9m
    @김상문-o9m Рік тому +2

    u perfect as always !!

  • @guh967
    @guh967 Рік тому +1

    Great video!

  • @AbsolutelyNoOne251
    @AbsolutelyNoOne251 Рік тому +4

    How can you integrate something that is not even a function?! What does it mean

  • @clemberube6681
    @clemberube6681 Рік тому +6

    Is there a formula for anti-derivative like the one for derivative (first principle)?

    • @PrimeNewtons
      @PrimeNewtons  Рік тому +5

      This function is not an elementary function, so I have hege doubts. Never tried it yet.

    • @clemberube6681
      @clemberube6681 Рік тому +1

      @@PrimeNewtons so there's one for elementary functions?

    • @fusuyreds1236
      @fusuyreds1236 Рік тому +1

      Riemann sums

    • @clemberube6681
      @clemberube6681 Рік тому +1

      @@fusuyreds1236 pretty sure it's for definite integral

    • @fusuyreds1236
      @fusuyreds1236 Рік тому +1

      @@clemberube6681 right

  • @flowingafterglow629
    @flowingafterglow629 Рік тому +1

    I'd take that first solution and rationalize the denominator. So you'd get
    x*W(x)^2 - x*W(x) + x + C
    Beautiful!
    You could factor the x to get x(W(x)^2 - W(x) + 1) + C, but I like the top one better

  • @거미남자_spidy
    @거미남자_spidy Рік тому +2

    What I found strange is that the RambertW function is also called a Productlog function. If call it Productlog, it might think it's a function created by multiplying log, so I personally think it's more appropriate to call it Rambert than Productlog.

    • @livikolumina5220
      @livikolumina5220 Рік тому +1

      Lambert, BTW
      The productlog comes from the fact that W is the inverse of xe^x, thus the product part of the name. Like a log, but not quite, and this specifies (very imperfectly) how

  • @codex8797
    @codex8797 Рік тому +1

    That is really cool

  • @KarlFredrik
    @KarlFredrik Рік тому +2

    Nice video!

  • @wagsman9999
    @wagsman9999 Рік тому

    Great video, and I want that cap.

  • @Rom-1k
    @Rom-1k Місяць тому

    Thank you! 😊❤

  • @ryanchiang9587
    @ryanchiang9587 Рік тому +4

    laplace transform
    fourier series
    fourier ..

  • @AndriiBilous
    @AndriiBilous 8 місяців тому

    Красунчик! Респект!

  • @spicca4601
    @spicca4601 Рік тому +1

    Wasen't that integration by parts leaves the last part as integral? I think the formula should ends with (...) +2e^u-integral e^u du (since i didn't do integrals for a time please forgive me if i am wrong)

  • @HashemAljifri515
    @HashemAljifri515 Рік тому +3

    Man could you integrate 3rd root tanxdx? I want to see how to do it in a simple way cuz you explain things nicely

    • @PrimeNewtons
      @PrimeNewtons  Рік тому +4

      There's no nice way for that. It's messy all the way.

  • @alexuserectus1607
    @alexuserectus1607 Рік тому +1

    Nice q👌🏼

  • @MASHabibi-d2d
    @MASHabibi-d2d Рік тому +1

    Please give an example for this integral... thanks

  • @thebasisti2482
    @thebasisti2482 4 дні тому

    Never stop learning🤓

  • @voice4voicelessKrzysiek
    @voice4voicelessKrzysiek Рік тому +1

    Don't see any links in the description!

  • @holyshit922
    @holyshit922 Рік тому +2

    I used integration by parts first
    Int(LambertW(x),x) = xLambertW(x) - Int(x*LambertW(x)/((1+LambertW(x))*x),x)
    Int(LambertW(x),x) = xLambertW(x) - Int(LambertW(x)/(1+LambertW(x)),x)
    Int(LambertW(x),x) = xLambertW(x) - Int(((1+LambertW(x))-1)/(1+LambertW(x)),x)
    Int(LambertW(x),x) = xLambertW(x) - Int(1,x) + Int(1/(1+LambertW(x)),x)
    Int(LambertW(x),x) = x(LambertW(x) - 1) + Int(1/(1+LambertW(x)),x)
    Int(1/(1+LambertW(x)),x)
    u = LambertW(x)
    x=u*exp(u)
    dx = (u+1)exp(u)du
    Int(1/(1+LambertW(x)),x) = Int(exp(u),u)
    Int(LambertW(x),x) = x*(LambertW(x) - 1) + exp(LambertW(x))+C

  • @TanmaY_TalK
    @TanmaY_TalK Рік тому +2

    It's not Lambert W function ❌
    It's bprp fish 🐟 function ✅

  • @wayneosaur
    @wayneosaur 3 місяці тому

    The first answer means you have to worry about case where W(x) = 0.

  • @juanosorio8148
    @juanosorio8148 Рік тому +1

    Now padé aproximation for lambert function

  • @Necrozene
    @Necrozene 9 місяців тому

    Integration by parts is merely flipping axes. Simple. The "DI" method is an artefact.

  • @serae4060
    @serae4060 9 місяців тому

    I understand that W(x*e^x)=x. But why is W(x)*e^W(x)=x?

    • @allozovsky
      @allozovsky 8 місяців тому +1

      Because:
      LHS: W[W(x)*e^W(x)] = W(x)
      RHS: just W(x)

    • @serae4060
      @serae4060 8 місяців тому

      @@allozovsky ah thanks I see

  • @tirtharajbanerjee
    @tirtharajbanerjee 6 місяців тому

    How could you write: W(x)e^W(x)=x ?
    Instead it should be: W(xe^x)=x.
    Isn't it?

  • @chandranisahanone
    @chandranisahanone Рік тому +1

    Inetgrate W(x)^f(x) dx ; where f(x) is the gamma function❗

  • @weo9473
    @weo9473 Рік тому

    I can't believe this bruh 💀

  • @Nzargnalphabet
    @Nzargnalphabet Рік тому +1

    *blocked