EASIEST PROOF of the POWER RULE!!!

Поділитися
Вставка

КОМЕНТАРІ • 13

  • @neelotpaldutta2347
    @neelotpaldutta2347 9 місяців тому +4

    The induction rule works only for integers. The proof for all real numbers is a bit more involved I think.

    • @JonnyMath
      @JonnyMath  9 місяців тому +2

      Yes you're right!!! I don't really know how to prove it for real numbers... Gotta find out!!!😉🤗

    • @jickey6108
      @jickey6108 9 місяців тому

      First principles?

    • @carultch
      @carultch 9 місяців тому +1

      ​@@JonnyMath Here's how you can prove it for real numbers in general. This assumes we already know the derivative of e^x, ln(x), and the chain rule.
      Given x^p, where p is a constant, we'd like to find d/dx x^p.
      Rewrite this in base e:
      e^(ln(x)*p)
      Differentiate with the chain rule:
      e^(ln(x)*p) * p/x
      Rewrite as a base x power:
      p*x^(p- 1)
      This shows that we get the power rule for positive x-values, exactly as we expect.
      You can extend this to show that it also works for negative x-values as well, by using complex numbers. When x is a negative number, the value of ln(x) = ln|x| + i*pi*(2*k + 1)
      Thus:
      e^(ln(x)*p) * p/x = e^((ln|x| + i*pi*(2*k + 1))*p) * p/x
      Expand with Euler's formula:
      e^((ln|x| + i*pi)*p) = |x|^p * [cos((2*k + 1)*p*pi) + i*sin((2*k + 1)*p*pi)]
      In order for this to have a real value, it must be the case that p is either an integer, or a fraction with an odd denominator. This way, (2*k + 1)*p will be an integer, and the sine term disappears, for a special case of the value of k. This is the version of the multivalued complex logarithm that matters. When this is the case, the derivative is:
      p*|x|^(p - 1) * cos((2*k + 1)*p*pi)
      The principal value, when (2*k + 1)*p = 1, will give us a cosine term of -1, which undoes the absolute value signs, and returns the original power rule:
      p*x^(p - 1)
      Where p is either a fraction with an odd denominator, or an integer.

    • @tomaszhejna8446
      @tomaszhejna8446 9 місяців тому +2

      @@JonnyMath you dont need to use the definition of derivative to prove it for real numbers, just change x^n to e^( ln(x) * n) and then use the rules for exponentials and the chain rule

    • @JonnyMath
      @JonnyMath  9 місяців тому +1

      Nice!!!😉🤗

  • @JonnyMath
    @JonnyMath  9 місяців тому +1

    Have you ever thought about this PROOF???🤩🤩🤩 Let me know!!!⬇⬇⬇

    • @ihopeicanchangethis8912
      @ihopeicanchangethis8912 9 місяців тому +1

      No I have Not.

    • @JonnyMath
      @JonnyMath  9 місяців тому +1

      But fortunately, now you know!!!😅🤣 I came up with it the other day (actually I guess more than two weeks ago!😅🤣) because I wanted a faster and simpler way to prove it because I don't remember the binomial theorem!!!😅🤣🤣🤣

    • @JonnyMath
      @JonnyMath  9 місяців тому +1

      Amazingly it has worked!!!😅🤣 And I guess you could even prove it for integers with negative exponents putting a minus sign in front of the exponent... I gotta try to do it!!!🤩🤩🤩

  • @The_Commandblock
    @The_Commandblock 9 місяців тому +3

    Ahhh a fellow Minecraft playing - math enjoyer

    • @JonnyMath
      @JonnyMath  9 місяців тому +2

      It's been a while since I last played Minecraft!!!😅🤣