Area Enclosed by a Polar Curve, Calculus 2

Поділитися
Вставка
  • Опубліковано 17 гру 2024

КОМЕНТАРІ • 107

  • @benjaminbrady2385
    @benjaminbrady2385 5 років тому +84

    Hey bprp. I've noticed that you seem more on edge towards negative comments lately. I hope that you're alright... more negative comments is a natural result of growth and most people aren't actually expressing hate but are often memeing or making an obscure reference. Remember, anyone who comments on more than one video is here because they love your videos, not because they hate them
    1000000/1-x

    • @blackpenredpen
      @blackpenredpen  5 років тому +30

      Thank you Ben.

    • @hamiltonianpathondodecahed5236
      @hamiltonianpathondodecahed5236 5 років тому +7

      can someone please explain me that *100/1-x* thing

    • @benjaminbrady2385
      @benjaminbrady2385 5 років тому +17

      @@hamiltonianpathondodecahed5236 1/1-x is the "Best friend" powerseries so by multiplying it, you're saying very best friend or best friends

    • @blackpenredpen
      @blackpenredpen  5 років тому +11

      Benjamin Brady yes! : )))

  • @BrainGainzOfficial
    @BrainGainzOfficial 5 років тому +53

    Black pen red pen blue pen?! 🤯

  • @SiilverEdit
    @SiilverEdit Рік тому +2

    the way you smile while explaining makes me happy and shows how much you enjoy keep up

  • @marcushendriksen8415
    @marcushendriksen8415 5 років тому +64

    "It's not because I cannot draw, but because it's not a circle."
    Since when were those two things mutually exclusive, huh? ;)

  • @frozenmoon998
    @frozenmoon998 5 років тому +21

    Art is not in painting, but in math, bprp! We do know your drawing was great.

  • @S1nwar
    @S1nwar 5 років тому +1

    i like that you always simplyfy after writing it down. there is never a step lost

  • @pronounjow
    @pronounjow 5 років тому +3

    You draw an amazing not-circle! It looks spot-on!

  • @roderickwhitehead
    @roderickwhitehead 5 років тому +2

    I don't believe I have ever seen integration by parts done that way... mind blown.

    • @colly9888
      @colly9888 5 років тому

      It's called the "tabular method for repeated integrals"! Very useful for trigonometric functions and e^x (:

  • @joso5681
    @joso5681 5 років тому +48

    "uploaded 36 seconds ago"
    "First comment 7 hours ago"
    Excuse me wot?

    • @828burke
      @828burke 5 років тому +18

      Polar time coordinates

    • @v6790
      @v6790 5 років тому +2

      Patrons get early access

  • @kostantinos2297
    @kostantinos2297 5 років тому +3

    I'd just like to say thank you for your help though these videos, particularly on integration. I've been studying the topic on my own ahead of my lessons, and these videos are an awesome way to put the theory into practice and better comprehend what it's all about.

  • @uncagedstudios1811
    @uncagedstudios1811 5 років тому +1

    I got an A in Calc II this semester because of your integration videos. Thanks for your help.

  • @wolfieeeee256
    @wolfieeeee256 5 років тому +5

    Wow this is actually really interesting :) Fantastic video!

  • @drpeyam
    @drpeyam 5 років тому +1

    Yaaaay! You’re the best!

    • @blackpenredpen
      @blackpenredpen  5 років тому +1

      Dr Peyam thank you!! Btw, does your calc class cover this?

    • @drpeyam
      @drpeyam 5 років тому

      blackpenredpen Sadly not 😣 We do polar coordinates, but not calculus with polar coordinates 😭

    • @blackpenredpen
      @blackpenredpen  5 років тому

      Dr Peyam oh

  • @michiplays00
    @michiplays00 5 років тому +2

    wow, perfect timing. Learning about polar area right now so thank you!

    • @blackpenredpen
      @blackpenredpen  5 років тому +1

      Michi Plays I have more examples. You can check my playlist. : )

  • @andres.robles6
    @andres.robles6 5 років тому +9

    Haz un álbum de puros problemas de cálculo vectorial.

  • @김주한-n2h
    @김주한-n2h 5 років тому +4

    Hello l'm Korea student your math is great useful

  • @MoonLight-sw6pc
    @MoonLight-sw6pc 5 років тому +7

    Thank u blackpenredpenbluepen

  • @r.d.x7403
    @r.d.x7403 5 років тому +1

    Just what I was looking for!

  • @slavii5772
    @slavii5772 5 років тому +9

    Can you do something about Diophantine equations?

    • @General12th
      @General12th 5 років тому +3

      Find all the parametric solutions for (x,y,z)^3 = 31.

  • @sergioh5515
    @sergioh5515 5 років тому +2

    Very good review for calc 2...thnx bprp 😀

  • @k.n.vkishore8201
    @k.n.vkishore8201 5 років тому

    You use colours of pens very nicely

  • @CuriousNeon
    @CuriousNeon 5 років тому +1

    DI table caught me off-guard lol! Maybe I need to study or watch some videos to understand it more...

  • @LifeIsBeautiful-ki9ky
    @LifeIsBeautiful-ki9ky 4 роки тому

    Explain about sketching a polar and parametric curves.

  • @General12th
    @General12th 5 років тому +1

    So good!

  • @gabrielmedina2480
    @gabrielmedina2480 2 роки тому

    Thank you!

  • @mothy4310
    @mothy4310 4 роки тому

    Thank you for the education! Your videos were my motivation to foray into calculus and finally got me back into learning math on my own (doing math for fun lol) keep it up! :)

  • @chaoticoli09
    @chaoticoli09 5 років тому +1

    Great video. I am now interested in the sequence of areas of each loop.

    • @blackpenredpen
      @blackpenredpen  5 років тому +1

      Hmm, it would be from n*pi to (n+1)pi and I wonder how the values will go.

    • @chaoticoli09
      @chaoticoli09 5 років тому +1

      You can certainly write the sequence of areas as a function of n by using the bounds you've provided and I believe that you get
      1/12 * pi^3 *(3n^2+3n+1)-pi/8. There may be some recursion you can develop from this, but I don't have any ideas off the top of my head. At least this allows you to provide the area of any loop that you want!

  • @kolinseward5033
    @kolinseward5033 5 років тому +2

    I don’t know what is going on in the universe but every time he posts it is somehow the same thing I’m going over the exact same time

  • @mathmathician8250
    @mathmathician8250 5 років тому +2

    If the inner loop goes from 0 to π, then the outer loop goes from π to 2π.

  • @hjk0150
    @hjk0150 5 років тому +2

    The area inside the outer polar curve and outside the inner curve should be 1/2π^3 if I did my calculations correctly.

  • @hayzzzeus
    @hayzzzeus 5 років тому

    Thank you blackpenredpen for another amazing video. This will definitely help me out for the AP Calculus BC Test. Also could you please make a video on differentiating a polar function?

    • @blackpenredpen
      @blackpenredpen  5 років тому

      I have a playlist in the description. : )

  • @antoniomodugno2753
    @antoniomodugno2753 5 років тому +1

    The larger circle area should be 7/12π^3-1/8π

  • @jarikosonen4079
    @jarikosonen4079 5 років тому

    How can you write cartesian y=sin(x) in polar coordinates and then integrate the area?
    It in some sense has no area at all... but if plug to this equation it would give area, right? (Because curve isn't "closed"). This case in cartesian case it gives 0 area if n*2*pi integration range is used. This case same in polar could give area of circle with radius r=n*2*pi..(???)

  • @zackmercurys
    @zackmercurys 5 років тому +1

    I wish I knew what is that D I table you always draw when you do integration by parts

    • @flaviusclaudius7510
      @flaviusclaudius7510 5 років тому +1

      I found this document on the subject; the first page is a proof, the rest showing how to use it (in table form):
      ramanujan.math.trinity.edu/rdaileda/teach/s18/m3357/parts.pdf

    • @flaviusclaudius7510
      @flaviusclaudius7510 5 років тому

      Also, pretty salty that I didn't come across this until the final year of my PhD >_>

    • @blackpenredpen
      @blackpenredpen  5 років тому +1

      ua-cam.com/video/matDV3XL2J8/v-deo.html : )

  • @pwootjuhs
    @pwootjuhs 5 років тому

    is it possible to compute when the area of a circular segment has the same area as a square with the same side length of the circles radius? I came to x-sinx=2. I don't see any way of getting any more out of this, but you might.

  • @taba3514
    @taba3514 5 років тому

    I think that the sign of the middle blue is not minus but plus(+½θ·sinθ = +(½)(¼)(π)=π∕8).

  • @yarooborkowski5999
    @yarooborkowski5999 5 років тому

    Could You prove the integral form of area between curves in polar cordinates, please?

    • @blackpenredpen
      @blackpenredpen  5 років тому

      Here's an example: ua-cam.com/video/JxIJLzDp-L4/v-deo.html
      Again, the formula is just "the area of the sector"
      I will do the proof one day.

  • @GabeTStarman
    @GabeTStarman 5 років тому +1

    Here’s an interesting question: how does one determine and prove mathematically whether or not the whole region 0 to 2π is similar to the region 0 to π?

    • @blackpenredpen
      @blackpenredpen  5 років тому +1

      Gabriel Taylor
      Hmmm very interesting! My first thought is to compare how their arc length and area changes. But it’s just a quick thought. I wonder if anyone else has any other idea?

    • @pierreabbat6157
      @pierreabbat6157 5 років тому +1

      It's obviously not, since the graph has a cusp at θ=0, but at θ=π it passes through the origin with finite curvature.

    • @StephenMolloyGoogle
      @StephenMolloyGoogle 5 років тому +1

      @@pierreabbat6157 Is that really true? For small angles, sinx=x, so x.sinx = x^2 --> finite curvature at 0. There shouldn't be any discontinuities anywhere since it can be differentiated as many times as you like.
      Another way to think about it is that the derivative of x.sinx will be x.cosx+sinx, which is clearly finite at x=0 (and all finite values of x). That also allows you to see that the gradient at the origin-crossings will change with a very interesting pattern -- 0, -pi, 2pi, -3pi, 4pi, etc.

    • @StephenMolloyGoogle
      @StephenMolloyGoogle 5 років тому +1

      Actually, now I see that I goofed. Polar form. Duh. Ignore me.

  • @blue_blue-1
    @blue_blue-1 5 років тому

    No „rad“ included. Like it.

  • @user-sq5uq8mj5m
    @user-sq5uq8mj5m 5 років тому +14

    Hi, blackpenredpen! What university did you graduate from?

  • @JamalAhmadMalik
    @JamalAhmadMalik 5 років тому

    If it Area of the bigger circle looking thing, would it be \theta replaced by 2\theta?

  • @ta_helado
    @ta_helado Рік тому

    Start a linear alegra series

  • @marstruth1578
    @marstruth1578 5 років тому

    Sign error: (I don’t have theta so using @) -2@ times -1/4 cos (2@) = 1/2 @cos(2@)

    • @yoyoezzijr
      @yoyoezzijr 2 роки тому

      Theres a negative outside too

  • @joehughes9043
    @joehughes9043 5 років тому

    What is that method of IBP?

    • @justabunga1
      @justabunga1 5 років тому +2

      Joseph Hughes This is called the DI method. D stands for differentiation and I stands for integration. He is setting up the tabular method to show a quick way of doing this.

  • @ВладиславБеляев-и1г

    is abs implicitly assumed there? sin(x) is negative for x=pi...2pi, so it is incorrect polar coordinates equation

    • @iabervon
      @iabervon 5 років тому

      No, r is allowed to be negative; it just puts the curve on the other side. That's why the second loop is also on top, despite the angle pointing down.

  • @lorahowsian6811
    @lorahowsian6811 4 роки тому

    In my calculator, I plug in the integral and I get 2.19, is this correct?

    • @blackpenredpen
      @blackpenredpen  4 роки тому

      Lora Howsian
      Hmmm try to enter what I got on the board to see if they match.

    • @lorahowsian6811
      @lorahowsian6811 4 роки тому +1

      blackpenredpen I did, I got approximately 2.19, and i subtracted the result you got and I got 2.19 too.

  • @LiammTheCat
    @LiammTheCat 5 років тому

    Can you do a video talking about and introducing polar coordinates :) #yay

    • @blackpenredpen
      @blackpenredpen  5 років тому

      I will put them in the description!

    • @LiammTheCat
      @LiammTheCat 5 років тому

      @@blackpenredpen thank you! how about a video talking about polar curves vs rectangular curves?

  • @purim_sakamoto
    @purim_sakamoto 3 роки тому

    これも普通に積分しちゃっていいのね
    あれ、なんでそうなるんだっけ
    基礎的な事が抜け落ちてるなあ

  • @thenewguy7527
    @thenewguy7527 5 років тому

    blackpenredpen
    #yaaaay

  • @bhuvird178
    @bhuvird178 5 років тому

    Good pa

  • @W.T.FISHAPPENING
    @W.T.FISHAPPENING 5 років тому

    so easy...

  • @therenaissance8322
    @therenaissance8322 5 років тому

    WHY DID YOU UNFOLLOW PAPA FLAMMY ON TWITTER?

  • @emperorpingusmathchannel5365
    @emperorpingusmathchannel5365 5 років тому

    Arya kills the night king.
    I am going to hell for this spoiler.

  • @Mnemonic-X
    @Mnemonic-X 5 років тому +2

    Does anybody know that the special theory of relativity is completely stupid theory that contradicts logic?

    • @blue_blue-1
      @blue_blue-1 5 років тому

      Сергей Мишин,
      No, I didn‘t.
      Make a video.

    • @Mnemonic-X
      @Mnemonic-X 5 років тому

      @DY_Physics If they (Maxwell's equations) contradicts logic then they are fake. Is it right, isn't it?