Area of Polar Curve r=1+2cos(theta)

Поділитися
Вставка
  • Опубліковано 19 січ 2025

КОМЕНТАРІ • 160

  • @NeonArtzMotionDesigns
    @NeonArtzMotionDesigns 5 років тому +68

    u sir just saved my life, i surely do appreciate this considering how i struggle with polar concepts

  • @hoonisalive
    @hoonisalive 4 роки тому +10

    It's very clear lecture for every students who studying polar coordinates..... thank you

  • @claudiorebelo
    @claudiorebelo 4 роки тому +6

    As to why the integrant is (1/2)*r^2: When 'r' is a constant you get a perfect circle with theta going from 0 to 2Pi. This is the equivalent of an horizontal line in the traditional rectangular coordinates. In rectangular coordinates, when you define step functions (from above and below) you get an area of a rectangle for each partition. In polar coordinates when you define a step function you get the area of a circular segment which is equal (1/2) * (theta_k - theta_k-1) * r^2. Where 'r' stand for radius and 'theta_k - theta_k-1' is the angle size of a given partition 'k' in radians.

  • @DeeEm2K
    @DeeEm2K 6 років тому +44

    3D geometry please please please please please please

  • @furqanfahad5175
    @furqanfahad5175 4 роки тому +1

    Thank you sooooooooooo much for making my concept

  • @matheuscolmenero4493
    @matheuscolmenero4493 6 років тому +2

    very good guy, congratulations, your channel is awesome

  • @arasadaramana4947
    @arasadaramana4947 6 років тому +4

    Your videos is very helpful to students

  • @KyleVincentBinondo
    @KyleVincentBinondo Рік тому

    realllyyyyyyyyyyy lol, now I understand !!!! thanks BPRP!!!!!!

  • @angelaramirez1902
    @angelaramirez1902 3 роки тому +1

    Gracias, te amamos!

  • @gervinho243
    @gervinho243 3 роки тому

    BPRP, you legend... Thank you so much.

  • @avdrago7170
    @avdrago7170 6 років тому +47

    Why is the area for a polar graph the integral of 1/2*r^2?

    • @davidalexander4505
      @davidalexander4505 6 років тому +14

      The Jacobian or density correction factor required for integrating correctly over sets in non Cartesian coords can be calculated using the defn of the change of variables. Calculation gives dx dy = r dr d(-). From here, if we have r ranging from 0 to r((-)), then this becomes dx dy = ½r((-))² d(-) by integrating over r. Here, (-)=theta

    • @RaymartGDamot
      @RaymartGDamot 5 років тому +5

      The strip area for a polar graph is a form of a triangular shape which area is (0 .5absin(theta)) that's why the integral area is 0.5r^2d(theta). a and b is just r and sin(theta) becomes d(theta) because it's super small we get rid of "sin". ( no good in english sorry.)

    • @supersayinsauce1788
      @supersayinsauce1788 5 років тому +7

      3 different definitions and I still dont know

    • @fortuna19
      @fortuna19 4 роки тому +2

      @@supersayinsauce1788 Biggest fallacies of smart people teaching maths...they usually state it in terms that *they* understand, but not necessarily comprehensible to someone trying to learn it for the first time.
      The straightforward, analytical answer is that the area of a polar graph is always a double integral, the outer integral is the same as shown in the video, but the inner integral has bounds 0 to r, integrating over dr, times the Jacobian which is just the determinant of a matrix, and is r for polar co ordinates. Computing this inner integral (with those bounds) will always give you r^2 / 2.

    • @tyronekim3506
      @tyronekim3506 4 роки тому

      You're not alone. Important step was glossed over and was stated as the "formula of the area." The area formula in polar coordinates should have been explained or derived.
      If you have a calculus text book, go to the index and look for "area under polar coordinates" for the explanation of the formula. Good luck. Stay safe and in good health.

  • @josuearreaga6813
    @josuearreaga6813 5 років тому

    Bro, why are you so amazing!

  • @magicfigures
    @magicfigures 21 день тому

    Magic squares, cubes and tesseracts in polar system - these solutions are completely new in mathematics. Problem is very complicated and complex. Please see homepage number-galaxy.

  • @SaniyaKhan-zr8xx
    @SaniyaKhan-zr8xx 3 роки тому +3

    I don't understand why for the smaller semicircle section the left end is 2pi/3? Isn't that point on the x axis? Wouldn't you expect it to be 0, pi or 2pi?

    • @lordcasper3357
      @lordcasper3357 2 роки тому

      at 2pi/3 r = 0 and the smallar circle starts to grow and at 4pi/3 it is complete. if you draw the equation from theta = 0 to 2pi you will see from 2pi/3 to 4pi/3 the smaller circle is complete. taking the integration limits as 2pi/3 to 4pi/3 will result in the smaller circle's area.

  • @sergioh5515
    @sergioh5515 6 років тому +9

    Now do... "Area of Polar Curve, Calculus 3" :)

  • @derekpoon5308
    @derekpoon5308 6 років тому +6

    The ans is π + 3 √3

    • @PLANET-EATER
      @PLANET-EATER 5 років тому

      Derek Poon you’re off by a little bit

    • @trace8617
      @trace8617 5 років тому

      @@PLANET-EATER mm no i put the integal into my calculator and got a decimal value equal to (pi + 3sqrt(3))

  • @papita3985
    @papita3985 2 роки тому +1

    Hablo español y te entendí, que grande 👏

  • @beatoriche7301
    @beatoriche7301 6 років тому +2

    Could the final answer be 3π? First, we can cancel out the halfs since we have a factor of 2, and then, we can multiply the expression out to get 1 + 4cosθ + 4cos^2θ. Integrating this, we get 3θ + 4sinθ + sin2θ. If we evaluate this from 0 to π, we get the answer of 3π - everything else cancels out, given that whole-numbered multiples of π are the zeroes of the sine function.

  • @bryanwu5829
    @bryanwu5829 3 роки тому +4

    i still dont understand how you get the Pi for the integral

    • @carultch
      @carultch Рік тому

      Pi is in the limits of integration. Very common for polar integrals, because we want a broad sweep across all possible values of theta, from 0 to 2*pi. After theta exceeds 2*pi, it becomes a redundant part of the function, so polar domains are commonly limited from theta = 0 to 2*pi.

  • @sreepragnya291
    @sreepragnya291 3 місяці тому

    Thank u so much sir !

  • @seanchao6218
    @seanchao6218 9 місяців тому

    Great explanation, clear and concise, by the way, could you comment on how to find the interval of theta that the graph is trace out exactly once? thanks appreciated it

  • @beatrizlopezcostilla6609
    @beatrizlopezcostilla6609 Рік тому

    gracias , estaba buscando uno en español pero no lo pude encontrar igual se pudo entender muy bien . Muy buena explicación!!

  • @gouravmadhwal5548
    @gouravmadhwal5548 6 років тому +41

    Plzz integrate
    ln(ln(ln(lnx)

    • @blackpenredpen
      @blackpenredpen  6 років тому +9

      : )

    • @KelfranGt
      @KelfranGt 6 років тому +1

      Neigh!

    • @antimatter2376
      @antimatter2376 6 років тому +13

      Horseshoe.

    • @janv.8538
      @janv.8538 6 років тому +4

      Maybe ln(ln(.......(x))))) in general :D

    • @leif1075
      @leif1075 4 роки тому

      @@blackpenredpen Do you have a video showing how to derive the formula for polar curves though? That's an important part. Or is there no way to derive it?

  • @SmathH
    @SmathH 5 років тому +2

    Area of green portion is negative.so can i say u have to add not subtract it to get exact value?

    • @hugoirarrazavalarteaga9879
      @hugoirarrazavalarteaga9879 4 роки тому

      Thats true, actually the master is wrong here

    • @hugoirarrazavalarteaga9879
      @hugoirarrazavalarteaga9879 4 роки тому

      it should be just one int. from 0 to Pi

    • @spaskanal1
      @spaskanal1 3 роки тому

      hopefully he will change it

    • @spaskanal1
      @spaskanal1 3 роки тому

      @@hugoirarrazavalarteaga9879 actually the answer is right, you are already going from a higher bound to the lower

  • @nishit7147
    @nishit7147 6 років тому +10

    Please do rotational geometry! Please! I will die a peaceful man then!

  • @lukedevlin45
    @lukedevlin45 3 роки тому +1

    Where did the formula for the integral at 4:30 come from?

    • @carultch
      @carultch Рік тому +1

      Think about it this way. When we use Riemann sums to establish integrals in general, we're slicing the function like it is a loaf of bread. We use the value of the function to tell us the size of each slice of bread, and then add up the slices to tell us the size of the total loaf.
      In polar coordinates, instead of slicing bread, we are slicing a pizza. Imagine a homemade pizza that isn't perfectly round, but has a radius that is a function of its theta-position. We find the area of each slice, by approximating it as a circular sector, and then add up the area of each slice. The area of a circular sector (a pizza slice) is 1/2*r^2*theta, where theta is its angle in radians and r is the radius. The infinitesimal pizza slice, has angle dtheta instead of theta, so the area element has area 1/2*r^2*dtheta.

  • @FlameBeast25
    @FlameBeast25 2 місяці тому +1

    i still dont get why theta2 is pi?

  • @myworldbox
    @myworldbox 4 роки тому

    perfect video

  • @jeffreytang7295
    @jeffreytang7295 5 років тому

    You saved my life

  • @janv.8538
    @janv.8538 6 років тому +11

    Prove that ln(x) is the only integral of 1/x and no other polynomial :D

    • @angelmendez-rivera351
      @angelmendez-rivera351 6 років тому +15

      Jan V. 1/x is not a finite polynomial. Anyway, your thesis is false. Ln(-x) is also an integral of 1/x, as is Ln(x) + 1 and Ln(-x) - 1.

    • @jmcwd
      @jmcwd 6 років тому +3

      I thought the integral of (1/x)dx was ln|x|?

    • @carultch
      @carultch Рік тому

      @@jmcwd It is. Although that's a half-truth, because the integral of 1/x is actually discontinuous at the vertical asymptote. For most practical applications, it's good enough, and we keep it simple as ln|x| + C.
      In the general case, the +C can be different on both sides of x=0, so it is more like ln|x| + C + D*u(x), where u(x) is the unit step function, and D is another arbitrary constant. There are very few (if any) applications where this matters.
      If we extend the domain to complex numbers, the integral of 1/z dz is the complex log of z + C. The complex log of z is the natural log of the magnitude of z, plus i*(theta + 2*pi*k), where k is any integer, and theta is the angle of the complex number z. So it becomes:
      integral 1/z dz = ln(|z|) + i*(arg(z) + 2*pi*k) + C. We have two arbitrary constants in this integral, the k because there are multiple branches of natural log, and C because it is an indefinite integral.

    • @carultch
      @carultch Рік тому

      You can do a limit proof on the power rule, to show why the integral of 1/x dx cannot be a standard polynomial, and instead is natural log.
      Let the exponent be -1 + h, such that the function is x^(-1 + h). The integral of a power function in general, of exponent n, is 1/(n + 1)*x^(n) + C.
      Substitute n = -1 + h:
      1/(-1 + h + 1)*x^h + C
      Simplify:
      1/h*x^h + C
      Use L'H's rule to take the limit as h approaches zero:
      d/dh x^h = d/dh e^(ln(x)*h) = ln(x)*e^h. Evaluate at h=0, gives us ln(x)
      d/dh h = 1
      Compiling the limit gives us:
      limit as h->0 of 1/h*x^h = ln(x)
      And since +C is independent of h, we can simply add +C
      Result:
      integral 1/x dx = ln(x) + C
      i'll leave it as an exercise to you, to show that applying absolute value bars to the x, makes this also valid for negative x.

  • @anilsharma-ev2my
    @anilsharma-ev2my 4 роки тому

    Found the equation for tilak in India
    So you found many types of geometry curve and equation on the forehead mathematical representation of universe on matha (forehead)
    Where actual mathematical calculation occurred

  • @yennako
    @yennako 10 місяців тому

    thank you

  • @sofiabarcenas6056
    @sofiabarcenas6056 4 роки тому

    Amazing!

  • @kat-gz5ki
    @kat-gz5ki 4 роки тому

    omg THANK YOU

  • @martynpage1794
    @martynpage1794 4 роки тому

    Thanks!

  • @i_am_anxious02
    @i_am_anxious02 6 років тому +2

    Your just pumping out the videos nowadays

  • @bilz0r
    @bilz0r 6 років тому +2

    Why do you integrate 1/2 r^2 dTheta ?... Shouldn't it be 1/2 r dTheta? i.e. we're cutting the graph into tiny triangles with base equal to r and height equal to dTheta.

    • @Jhopsssss
      @Jhopsssss 6 років тому +3

      bilz0r We’re integrating the area which means we need a double integral:
      int(0,r, int(0,θ1, r dθ)dr)
      From Fubini’s theorem for double integrals:
      int(0,θ1, int(0,r, r dr)dθ)
      And we get:
      int(0, θ1, (1/2)(r^2) dθ)
      Where r is a function of θ

    • @Jhopsssss
      @Jhopsssss 6 років тому +1

      Where the notation
      int(a,b, f(x) dx)
      Should be read as “the integral from a to b of f(x)dx.”

    • @bilz0r
      @bilz0r 6 років тому +1

      I'm just an idiot. I thought the height was equal to dTheta, but obviously the height is dTheta*R... so the area of each triangle is 1/2*r*r*dTheta = 1/2 r^2 dTheta.

    • @falkinable
      @falkinable 6 років тому +2

      bilz0r We’re dividing the curve with tiny wedges, not necessarily triangles. The area of a wedge with radius r is 1/2*r^2*theta, where theta is the angle of the wedge in radians. As theta becomes infinitesimally small you end up with 1/2*r^2*dtheta. This is what you integrate.

  • @purim_sakamoto
    @purim_sakamoto 3 роки тому

    おお、なんかむっちゃり難しそうに見えたけど
    普通に積分するだけでいいんですね
    実数しか出てこんかった🙂

  • @aniketmishra2242
    @aniketmishra2242 6 років тому +1

    Can you please elaborate how to find radius of curvature of any random curve(e.g. ellipse,hyperbola,etc) if don't know its differential form

  • @saswatsaravanan6415
    @saswatsaravanan6415 2 роки тому +1

    Words cannot express how much I love you. Please marry me

  • @brendanmccann5695
    @brendanmccann5695 5 років тому +1

    The result of the 2nd integral is negative, isn't it? So you end up adding the two areas instead of subtracting. Shouldn't you be adding the two integrals?

    • @spaskanal1
      @spaskanal1 3 роки тому +1

      he should either change the bounds, or sign

    • @rocklight4111
      @rocklight4111 Рік тому

      Good observations. Area below the initial line is negative. I think another negative needs to be introduced Infront of the second integral to get the difference instead of the sum

  • @abhi20user-z8jm5my9p
    @abhi20user-z8jm5my9p 4 роки тому

    Do more videos about this concept.

  • @paulapaez2877
    @paulapaez2877 5 років тому +2

    Me encantoooooo.....

  • @aileen5639
    @aileen5639 5 років тому

    thank you :)

  • @rahleigh5829
    @rahleigh5829 Рік тому

    Hi, can you please find the area of inner loop?

  • @m_alhuriaty
    @m_alhuriaty Рік тому

    Nice but you lost me where it's the direction of positive x-axis and still wrote "r" as minus one "-1" mmm???

  • @anilsharma-ev2my
    @anilsharma-ev2my 4 роки тому

    What is hydraulic jack formula in integrated form so we know it's maximum capacity and thresholds limits at quantum physics level

  • @aymen2698
    @aymen2698 3 роки тому

    life saver

  • @ILoveMaths07
    @ILoveMaths07 6 років тому

    Why is theta2 pi? And what does a negative value of r indicate? I didn't get that part...

  • @16kush
    @16kush 3 роки тому +1

    Sir can you do the same for 1 +cos2theta

  • @amrantanya9505
    @amrantanya9505 6 років тому

    Intigration( x^2 e^x^2 dx)

  • @federicopagano6590
    @federicopagano6590 6 років тому

    I cannot understand how come that r=-1 because by definition r=sqrt (x^2+y^2) so I don't get it.More challenging how do u define that region? r between ? and theta between?Is it possible that when u have
    2/3pi

    • @sed2224
      @sed2224 6 років тому

      Federico Espil the points of the curve are defined by
      (x,y)=(r cos(θ),r sin(θ)) and r = f(θ) so it can be negative, and the def is not the distance to origin (even if abs(r) give it) here. it is like multiplicating a complex Z of U={complex z such that |z|=1}, taking a real r value and say |rZ|=r

    • @federicopagano6590
      @federicopagano6590 6 років тому

      Sed but the definition of r I read in lots of pdf even Wikipedia is the distance from the point to the origin Whatever it is the definition it is troublesome to define that area (not the curve) in polar system because of this problem

    • @sed2224
      @sed2224 6 років тому

      No, i talk about the définition of r not "the radius", just r, this is just a function of θ.

  • @dant9944
    @dant9944 6 років тому +1

    why the second integral from 2π /3 to π an not 2π ?

    • @justabunga1
      @justabunga1 5 років тому

      At 2pi, you’re just going to go back at theta = 0, and we don’t want that. Look at the graph, and then trace the steps where it’s going from. It will help remember where this is going.

  • @gustavolozada982
    @gustavolozada982 3 роки тому

    i really love u.

  • @leif1075
    @leif1075 4 роки тому

    Any videos on how to derive this formual for this cardiod shape?

  • @rishijha2583
    @rishijha2583 6 років тому

    integral of y×dx is area

    • @carultch
      @carultch Рік тому

      In rectangular coordinates, yes. We're slicing a loaf of bread, and the height of each slice is y, and the thickness of each slice is dx. Integrating y dx gives us the area of the loaf. In 3-D, it becomes a double integral, where we're slicing a corn bread, where the width is dx, the length is dy, and the height is z, so we're integrating twice, the value of z*dx*dy.
      In polar coordinates, we're slicing a pizza. Each slice has an angle of dtheta, and a radius of r. The area of each slice is 1/2*r^2*dtheta.

  • @marcusmoulia639
    @marcusmoulia639 2 роки тому

    nice

  • @zahra.h1420
    @zahra.h1420 6 років тому

    Great 👍🏻

  • @edwardlewandowski7830
    @edwardlewandowski7830 4 роки тому

    Szacun🕊✋🌷salut!!!!🎺👒

  • @igorjasenovski4313
    @igorjasenovski4313 Рік тому

    Does the answer of the area approx. to 8.33?

  • @MOHNAKHAN
    @MOHNAKHAN 6 років тому

    If we integrate or differentiate
    3x^2+2x+1 = 0
    Then what are applications of it?

    • @asadyamin4867
      @asadyamin4867 6 років тому +2

      If we integrate it, we can find the area under it's curve, if we differentiate it we can find the slope of a tangent line at any point, those are the simple ones there are many more applications

    • @georgefan2977
      @georgefan2977 6 років тому

      Mohna Khan Simply put, you can calculate the area under the curve, or instantaneous change at any point in time.

    • @antimatter2376
      @antimatter2376 6 років тому

      @@georgefan2977 actually, it's impossible to know the instantaneous rate of change at a single point, but it does give a back a closely approximated value. For example, the derivative of x^2 is 2x. That means the slope of a tangent line would tend to the value of 2 times the value you chose.

  • @rudolfgyorkei9558
    @rudolfgyorkei9558 6 років тому +1

    Do you dream in numbers?

  • @holyshit922
    @holyshit922 3 роки тому

    Derive the formula without double integral
    I tried with formula for parametric curves

  • @saxbend
    @saxbend 6 років тому +2

    Not the origin. The pole.

    • @angelmendez-rivera351
      @angelmendez-rivera351 6 років тому

      saxbend (0,0) is the origin by definition

    • @saxbend
      @saxbend 6 років тому

      @@angelmendez-rivera351 only in cartesian coordinates. Polar coordinates are based on modulus and argument. Modulus being represented by distance from the pole.

    • @angelmendez-rivera351
      @angelmendez-rivera351 6 років тому

      saxbend No, it represents the origin in all coordinate systems. It is defined as the origin in all coordinate systems. And I know how spherical coordinates work. I have a degree.

  • @geshbenrewand1778
    @geshbenrewand1778 4 роки тому

    God bless you

  • @jimitpatel254
    @jimitpatel254 6 років тому

    Why did you square that

  • @jameshenner5831
    @jameshenner5831 6 років тому

    interestingly this polar function is nearly approximated (on the right side) with a circle of radius of sqrt(pi)
    i.imgur.com/GZ5sokp.jpg

  • @myworldbox
    @myworldbox 4 роки тому +1

    quick answer:
    r = 1+cos(theta)
    integrate from 0 to 2pi/3 of (1+cos(theta))^2 - integrate from 2pi/3 to pi of (1+cos(theta))^2

  • @arasadaramana4947
    @arasadaramana4947 6 років тому +1

    Thank Q very much ....

  • @ingilizcehazrlk9134
    @ingilizcehazrlk9134 6 років тому

    Great

  • @Kmrabhinav569
    @Kmrabhinav569 6 років тому +1

    Pie is the answer

  • @hueydo3522
    @hueydo3522 5 років тому

    Where do you live? China or somewhere else?

    • @UrasSomer
      @UrasSomer 5 років тому

      He lives in the US

  • @abdulltifalzedan9769
    @abdulltifalzedan9769 3 роки тому

    I got (pi+3sqrt3) as a final answer

  • @ganeshmanickavel9537
    @ganeshmanickavel9537 6 років тому

    Are you studying at hkust

  • @sumitsaharan05
    @sumitsaharan05 2 роки тому

    Limit should be 0 to pi

  • @BigDBrian
    @BigDBrian 6 років тому +1

    I think the method you use to determine theta for cos(theta) = -1/2 is flawed. It omits the second solution, and while in this case it works out, that's not always the case. Also if you interpret -1/2 as 1/(-2) (the different but equivalent interpretation of the fraction) you have to do some mental gymnastics to end up with the correct triangle for the omitted solution.

    • @blackpenredpen
      @blackpenredpen  6 років тому +1

      r is always positive. This is called the reference triangle, it's a precalc method. : )

    • @BigDBrian
      @BigDBrian 6 років тому +1

      then you're just omitting the second solution
      tbh I'd still just draw a unit circle

    • @Jhopsssss
      @Jhopsssss 6 років тому +1

      From the symmetry of the problem, it’s obvious the angle sought after is on the interval (0, π]. The second solution proposed is not relevant.
      Even if it were, interpreting -1/2 as 1/(-2) does not remedy the problem. More generally, we can still arrive at the proposed second solution using reference triangles by taking the r into the third quadrant.
      For more, consult:
      www.nr.edu/chalmeta/271DE/Section%209.4.pdf

    • @BigDBrian
      @BigDBrian 6 років тому

      @@Jhopsssss to construct the triangle for 1/2 and then take the full negative. The issue is you end up with -1 for x again even though we avoided that.
      The best reasonable explanation for why to do this is to just use the unit circle.
      Sticking to the method, the best method would be to lock in x=-1 and then draw R either direction to complete the triangle, and THEN reject any solution that you don't need.

    • @Jhopsssss
      @Jhopsssss 6 років тому

      @@BigDBrian, in this particular example of cosθ = -1/2, the solutions on the interval [0, 2π) are θ = 2π/3 and θ = 4π/3. x must be -1 in order to arrive at these solutions because the vector sweeping out these angles occupy the second and third quadrants. Reversing the direction of r in either of these cases lands the vector in the first or fourth.
      The reference triangle method begins by plotting x = -1 (a vertical line on the Cartesian plane). Then, we can draw r = 2 (a circle of radius 2 centered at the origin) and find the two points at which they intersect. We then draw a vector to each of those points and find that the angles they sweep out are 2π/3 and 4π/3.
      To address your concern of chronology: at this point, we are free to discard the 4π/3 solution.
      Please note that we cannot simply draw a horizontal line segment of length 1 and then draw a diagonal line segment of length 2 in any direction and expect any useful information to fall out from it. We would get an family of triangles. The reference triangles are defined such that the projection of r onto the x-axis is equal to x (i.e. x = -1 in this case).

  • @i_read_words
    @i_read_words 5 років тому

    this curve actually does not intersect the origin it is very close but if you graph it on desmos and zoom in to the "intersection" you'll see it isn't one

  • @physicswalebaba1942
    @physicswalebaba1942 4 роки тому

    love from indi

  • @karthickraja8668
    @karthickraja8668 5 років тому

    Can any one say how to form this curve in desmos app

    • @AnnoyingMiner10
      @AnnoyingMiner10 5 років тому

      Karthick Raja Type “r=1+2cos(theta)”

    • @karthickraja8668
      @karthickraja8668 5 років тому

      @@AnnoyingMiner10 yess i made mistake i put x instead of r i.e., i mixed Cartesian coordinates and polar coordinates in a same jar :-)

    • @AnnoyingMiner10
      @AnnoyingMiner10 5 років тому

      Karthick Raja oof That’s alright!

  • @MurtadhaAljanabi
    @MurtadhaAljanabi 6 років тому +3

    Did I watch this before?

  • @RockMusicas
    @RockMusicas 6 років тому

    Hey BPRP. Could you do the integral of x^2/sqrt (4+x^2) dx using hyperbolic substitution?

    • @Circuito28
      @Circuito28 5 років тому

      Great, That's the same int that I wasn't able to solve in my math test without hyperbolic sub, BPRP could you solve it with hypsub and with algebraic method?

  • @rainoxerus9558
    @rainoxerus9558 3 роки тому

    What if I have equation 1/2 + cos(theta). Is it the same as 1+2cos(theta)??

  • @angelaramirez1902
    @angelaramirez1902 3 роки тому

    Quisiera que usted fuera mi catedrático de cálculo, no uno todo pendejo :)

  • @jacobtennyson6186
    @jacobtennyson6186 4 роки тому

    This is a CARDIOID..

  • @kingadnan1081
    @kingadnan1081 Рік тому

    😅😅😅This polar stuff is confussing

  • @ronycb7168
    @ronycb7168 8 місяців тому

    pi + 5sqrt(3) is what I got can anyone verify?

  • @antimatter2376
    @antimatter2376 6 років тому +1

    I was wondering what happened to this video.

  • @hlcsrnoctonium9081
    @hlcsrnoctonium9081 4 роки тому

    R maior ou igual zero!!!!

  • @Overglitch_
    @Overglitch_ 4 роки тому

    green pen entered the exercise, unsubscribe

  • @oscartroncoso2585
    @oscartroncoso2585 6 років тому

    First!

  • @SANDRA-lh4vs
    @SANDRA-lh4vs Рік тому

    thanks!