The Darboux Integral

Поділитися
Вставка
  • Опубліковано 10 лис 2024

КОМЕНТАРІ • 84

  • @slavinojunepri7648
    @slavinojunepri7648 Рік тому +6

    I just discovered this channel and found it to be an excellent refresher for my calculus and analysis. The proof on the equality of the upper and lower sums of the Darboux integral is neat and elegant. Merci énormément Dr Peyam!

  • @maximusmadman
    @maximusmadman 9 місяців тому +2

    most fun ive ever had watching a math video! this guy is hilarous!!!

    • @drpeyam
      @drpeyam  9 місяців тому

      Awwwww thank you!!!!

  • @cassianperera2426
    @cassianperera2426 3 роки тому +11

    You are a very good Teacher and a very good lecturer,your explanation is excellent.Thank you.

    • @drpeyam
      @drpeyam  3 роки тому

      Thanks so much!!!

  • @mrnogot4251
    @mrnogot4251 Рік тому +1

    I like that you hit the whiteboard when you evoked the monotone sequence theorem lol.

  • @alieser7770
    @alieser7770 2 роки тому +2

    Dr. Peyam you are the best! I used tı watch your videos in high school and they are still immensely helpful in college.

    • @drpeyam
      @drpeyam  2 роки тому

      I’m so happy to hear that! Thank you 😊

  • @luna9200
    @luna9200 3 роки тому +10

    You helped me with so much of my analysis course! Now we're onto abstract measure theory and I don't have Peyam to help me through it!! Have you thought about making videos on this?

    • @drpeyam
      @drpeyam  3 роки тому

      There’s a video on the Lebesgue integral 😄

  • @houdarebbouh3149
    @houdarebbouh3149 2 роки тому

    You helped very much with my Calculus course thanks to your unique way of teaching. ThankYou!

  • @masonprice897
    @masonprice897 3 роки тому +2

    Super helpful!

  • @General12th
    @General12th Рік тому

    This is great! I'm so happy I was able to follow along!

  • @juanmolinas
    @juanmolinas 3 роки тому +3

    Greetings Dr!, that was a nice lesson!

  • @jyotsanabenpanchal7271
    @jyotsanabenpanchal7271 2 місяці тому

    Woah 😳😨! This is new for me!!

  • @ehess1492
    @ehess1492 3 роки тому +6

    I actually laughed out loud at 9:18 😂

  • @IlayShriki
    @IlayShriki 4 місяці тому

    you are underated

    • @drpeyam
      @drpeyam  4 місяці тому

      Thank you :3

  • @rikthecuber
    @rikthecuber 3 роки тому +3

    @Dr. Peyam How can we differentiate functions of the form x^a where a is irrational? The binomial expansion is defined only for rational exponents, so we cannot use the power rule. Like y= x^(sqrt(2)) Find dy/dx .

    • @drpeyam
      @drpeyam  3 роки тому +2

      You define it as Sup of the derivatives of x^r where r goes through all the rationals less than a

    • @rikthecuber
      @rikthecuber 3 роки тому

      @@drpeyam I do not know what sup is :(

    • @CarTLA
      @CarTLA 3 роки тому

      @@rikthecuber Another way would be by using the limit as x->0 of ((1+x)^a-1)/x that is a (a is any real number). Using some limit algebra in the definition of derivative, you are done.

    • @ZipplyZane
      @ZipplyZane 3 роки тому

      ​@@rikthecuber Sup stands for supremum, also known as the "least upper bound." This is the smallest number that is greater than or equal to all numbers in a set.
      It's kinda like the limit of the maximum value.

    • @martinepstein9826
      @martinepstein9826 Рік тому

      y = x^(sqrt(2)) = e^(sqrt(2) ln(x))
      dy/dx = sqrt(2) e^(sqrt(2) ln(x)) / x = sqrt(2) x^(sqrt(2)) / x = sqrt(2) x^(sqrt(2) - 1)

  • @phukinho
    @phukinho 3 роки тому +2

    Great! Now I can stay home happy ;)

  • @dr.rahulgupta7573
    @dr.rahulgupta7573 3 роки тому

    Many many thanks Dr 3.14159.......m for presenting a nice integral.

  • @Fetrose
    @Fetrose 3 роки тому

    Great presentation.

  • @anthonyjulianelle6695
    @anthonyjulianelle6695 2 роки тому

    In the beginner of the video you talk about subdivide (0, 1) into subrectangles. I think you should say, into,
    "subintervals".

  • @darmok3171
    @darmok3171 3 роки тому +1

    Thanks!

    • @drpeyam
      @drpeyam  3 роки тому

      Omg, thanks so much for the super thanks, I really appreciate it! :)

  • @murielfang755
    @murielfang755 3 роки тому +2

    nice explanation

  • @skylardeslypere9909
    @skylardeslypere9909 3 роки тому +4

    I didn't know Riemann integration was with random points in the intervals. I was always taught the method with the upper and lower sum and told it was Riemann Integration.

    • @skylardeslypere9909
      @skylardeslypere9909 3 роки тому

      @@DoctrinaMathVideos i know what Riemann integration is :)

  • @pierreabbat6157
    @pierreabbat6157 3 роки тому

    You've shown that e.g. U15

  • @arengolazizian6191
    @arengolazizian6191 2 роки тому

    you are awsome
    thanks

  • @tomasnavarrofebre5876
    @tomasnavarrofebre5876 3 роки тому

    Lebesgue integral and mesure next! 🙏🏻

    • @drpeyam
      @drpeyam  3 роки тому

      Already done ✅

  • @frozenmoon998
    @frozenmoon998 4 роки тому +3

    Those of us who love integrals made the effort to watch this whilst it was hidden :)

  • @bamdadtorabi2924
    @bamdadtorabi2924 3 роки тому +1

    One question tho. Why do we need f's domain to be [0, 1]? Where does this come into play in the Darboux integral's definition?

    • @drpeyam
      @drpeyam  3 роки тому +2

      Any interval [a,b] suffices

  • @vnever9078
    @vnever9078 3 роки тому

    hey peyam love ur videos.......pls make vids on graph theory too.

    • @drpeyam
      @drpeyam  3 роки тому

      Thank you!!! But probably not haha

    • @vnever9078
      @vnever9078 3 роки тому

      @@drpeyam why? is it an area of mathematics you don't like(to teach)?

    • @Errenium
      @Errenium 2 роки тому

      @@vnever9078 could be outside their comfort zone, or something that is just not conducive to their approach to pedagogy. we all have our limitations

  • @soumyaghosh8823
    @soumyaghosh8823 3 роки тому

    Dr.peyam we had an analysis course during my master's so could you make a video on Henstoke integral and one more thing can we extend the proof what you did in measures space

    • @drpeyam
      @drpeyam  3 роки тому

      Oh wait, you mean the gauge integral, here it is: ua-cam.com/video/YysXWe8CJVs/v-deo.html

  • @onattanriover
    @onattanriover 2 роки тому

    Appreciate it

  • @adityaekbote8498
    @adityaekbote8498 3 роки тому +1

    Soo cool

  • @joluju2375
    @joluju2375 3 роки тому +1

    Why did Darboux or other mathematicians as well come up with their own definition of an integral ? Is it just an intellectual game, or can it be useful sometimes ?

    • @drpeyam
      @drpeyam  3 роки тому +2

      So the naming is usually done long after their deaths. It’s just that they found for example that the Riemann integral has limitations, so they invent new ones

  • @timetraveller2818
    @timetraveller2818 3 роки тому

    its ya boy time traveller back again time travelling
    proof: profile picture

  • @geetathakur445
    @geetathakur445 2 роки тому

    Its very similar to the riemann integral defined in walter rudin🤔

  • @SuperYoonHo
    @SuperYoonHo 2 роки тому +1

    Thank you though i don't understand/...

  • @personxy7443
    @personxy7443 2 роки тому

    if we dont use the partition(1/N),and we just know it has infimum for upper sum,and how do eusure that it converges to the infimum,?is it still monotone?

    • @drpeyam
      @drpeyam  2 роки тому

      The result is still true, for this you would use a Cauchy criterion for integrability

    • @drpeyam
      @drpeyam  2 роки тому

      people.tamu.edu/~tabrizianpeyam/Math%20409/Lecture%2025.pdf

    • @personxy7443
      @personxy7443 2 роки тому

      @@drpeyam thank you,sir!!!~.~

  • @emmazambelli
    @emmazambelli Рік тому

  • @incxxxx
    @incxxxx 3 роки тому

    When the Darboux integrals are useful? Rieman integral is not sufficient?

    • @respectpartii6302
      @respectpartii6302 3 роки тому

      They're useful because they limit the Riemann Integral. The lower Darboux sum is a lower bound of the Riemann Sum and the upper Darbou sum is the upper bound the Riemann sum. And a function is Darboux Integrable if and only if it is Riemann Integrable besides in this case the Darboux sums are equal to the Riemann sum.

  • @saroshiqbalbhatti2901
    @saroshiqbalbhatti2901 3 роки тому

    Module theory book recommend

    • @drpeyam
      @drpeyam  3 роки тому +1

      No

    • @akselai
      @akselai 3 роки тому +2

      @@drpeyam bruh

    • @saroshiqbalbhatti2901
      @saroshiqbalbhatti2901 3 роки тому

      @Oily Macaroni what yes

    • @rickdoesmath3945
      @rickdoesmath3945 3 роки тому

      In this channel we are all analysts and we are afraid of algebraic structures (except for vector spaces, they are cute), so the words you're saying are scaring the hell out of us.

    • @rikthecuber
      @rikthecuber 3 роки тому +1

      @@rickdoesmath3945 Meanwhile me being a high school student.

  • @dominicjamescunneen1740
    @dominicjamescunneen1740 2 роки тому

    9:17

  • @GhostyOcean
    @GhostyOcean 3 роки тому +3

    Hmm, I think it's interesting how you skipped talking about refinements of a partition by using evenly spaced subintervals

  • @sharpnova2
    @sharpnova2 3 роки тому

    bruh do a video on Lebesgue integration

    • @drpeyam
      @drpeyam  3 роки тому

      Already done ✅