Laplace Transform of t^2

Поділитися
Вставка
  • Опубліковано 19 січ 2025

КОМЕНТАРІ • 57

  • @anonimuso
    @anonimuso 5 років тому +16

    It's amazing how fast you switch from black marker to red marker when you're writing.
    The things you notice when you should be focusing on what's being written... :)

  • @harleywilliams9286
    @harleywilliams9286 4 роки тому +13

    your method for integration by parts is genius

  • @killingsk8ter
    @killingsk8ter 3 роки тому +12

    fastest way to integrate by parts. Best method I've learned so far.

  • @dappermink
    @dappermink 7 років тому +18

    I love how you say "thank you" to all these handsome 0's :)

  • @apeximperator
    @apeximperator 2 роки тому +1

    ohh!! what a fantastic explanation!!!

  • @ravinageshwar408
    @ravinageshwar408 Рік тому

    Thank you so much bor love from India , your video was so useful and helpful 😊

  • @ptmsonsgamefarm7633
    @ptmsonsgamefarm7633 5 років тому +5

    Thank you sir you made it very clear and I'll be taking my exams tomorrow
    Godbless

  • @laishadamarisgarciaperez1350
    @laishadamarisgarciaperez1350 3 роки тому +1

    Gran ayuda y muy rápido que lo resolviste. Gracias bro

  • @khryz1
    @khryz1 5 років тому

    My black and red hero.

  • @temiloluwaolabisi5177
    @temiloluwaolabisi5177 Рік тому

    Thank you so much.

  • @Flanlaina
    @Flanlaina 4 роки тому +1

    The capital n can be whatever you want,
    ex: [lim,α->∞]([integral,0,α](e^(-st)*t^2 dt))

  • @Pubg_4446
    @Pubg_4446 4 роки тому

    Thank you very much 🥰🥰

  • @iiumstudent1995
    @iiumstudent1995 4 роки тому

    best one THANKK YOU

  • @jungwookrlee
    @jungwookrlee 3 роки тому +1

    what happened to L'Hoptial's Rule?

  • @olivioarmandocordeirojunio8280
    @olivioarmandocordeirojunio8280 3 роки тому

    Thanks a lot.

  • @luisdaniel9542
    @luisdaniel9542 7 років тому +8

    Hi, I do understand the math you're using however, could you tell me what is exactly a Laplace transform? in other words what are you exactly doing when you do this function?

    • @blackpenredpen
      @blackpenredpen  7 років тому +3

      en.wikipedia.org/wiki/Laplace_transform

    • @mdhz786
      @mdhz786 7 років тому +2

      Basically time domain to frequency domain.

    • @carultch
      @carultch Рік тому

      Essentially, it's scanning the original function for a continuous composition of exponential decay functions, where s is the decay rate of the exponential decay, and the transformed function is the amplitude of each exponential decay term as a function of s. And it scans across the real domain of s, and the entire complex domain of s.
      Real values of s, are exponential functions, while imaginary values of s are sine waves. A complex combination is a product of an exponential and a sine wave. The Laplace transform scans for all of these component functions.
      A special case of the Laplace transform, is the Fourier transform, which is limited to the imaginary values of s. This corresponds to the steady state behavior after all transient exponential decays have completed.

  • @ashwinkumar3659
    @ashwinkumar3659 5 років тому

    thank you, you are awesome

  • @jonathansouthwood3767
    @jonathansouthwood3767 6 років тому

    Amazing thank you so much

  • @EricLeePiano
    @EricLeePiano 6 років тому +3

    i need to watch your video on integration by parts LOL, i tried to do it using the u du v dv method and got -2/s^3 instead... something went wrong with my calculation somewhere....

    • @Lucylu723
      @Lucylu723 3 роки тому +1

      I could help you as to where you've gone wrong because I made a similar mistake. Make sure that when you are substituting infinite in for the t variables which gives you 0, that you properly write out the equation inclusive of 0. Do not ignore it!
      = 0 - (substitution of 0 into t variable)
      Then you'll quickly see that
      = 0 - (-2/s^3) = 2/s^3
      Hope that helps! It's really easy to make the plus minus error especially if you discard the 0 and forget to include it in the equation to get the final answer.

    • @EricLeePiano
      @EricLeePiano 3 роки тому +1

      @@Lucylu723 Thank you! I appreciate your help

    • @Lucylu723
      @Lucylu723 3 роки тому

      @@EricLeePiano No prob😊

  • @ruaamashkoor3269
    @ruaamashkoor3269 7 років тому +1

    perfect ........ thanks ....... please i want the Laplace application

  • @1p1p3p4p5
    @1p1p3p4p5 2 роки тому +1

    Fucking legend. I would buy you a beer 🍻 if ever we met

  • @نازاحمد-ق3و
    @نازاحمد-ق3و 3 роки тому

    Thankyou

  • @AJourneyersVantagePoint
    @AJourneyersVantagePoint 5 років тому

    thanks bro!

  • @bhavanavavilala5953
    @bhavanavavilala5953 3 роки тому

    Very helpful #💯

  • @CaiquePinheiroAndrade
    @CaiquePinheiroAndrade 9 місяців тому

    veri gud!!! tanku

  • @sangaychoden-n3o
    @sangaychoden-n3o Рік тому

    i would be grateful if sir could upload a video in integration by parts by using (ILATE)rule in shortcut way..

    • @justsaadunoyeah1234
      @justsaadunoyeah1234 11 місяців тому

      LIATE/ILATE is good, and by good I mean it works around 75 to 85 percent of the time. But when it doesn't, it doesn't get you anywhere. So I wouldn't recommend using it.

  • @RajaSwarnakarAP
    @RajaSwarnakarAP 7 років тому

    Thanks sir

  • @filipsperl
    @filipsperl 7 років тому

    Why can't there be infinity-infinity in the first half of the integrated result??

    • @austinkim9402
      @austinkim9402 6 років тому

      you have to understand that infinity isn't a number. It's a concept or rather a representation.

  • @emanonscarlett421
    @emanonscarlett421 7 років тому

    Thank's :)

  • @karunasaha2535
    @karunasaha2535 4 роки тому

    Marker switcher

  • @michaeldinardi3237
    @michaeldinardi3237 4 роки тому

    i love you

  • @alihamzamalik2730
    @alihamzamalik2730 3 роки тому

    Laplace transform of t cube

  • @roslindmary2705
    @roslindmary2705 4 роки тому

    How to find the laplace transform of t^2 - 2t

    • @raduintegralistul9046
      @raduintegralistul9046 4 роки тому

      I think you can break it in 2 integrals.(since you multiply both of them with e^(-st). Then you solve each of them.

  • @octopuspartyofficial
    @octopuspartyofficial 7 років тому

    The addition sign is used twice in this video. Twice.

  • @alihamzamalik2730
    @alihamzamalik2730 3 роки тому

    Laplace transform of 4

  • @dattabiradar3214
    @dattabiradar3214 6 років тому

    what is ans of 2^t

    • @carultch
      @carultch Рік тому

      Laplace transform of 2^t is 1/(s - ln(2)).
      Rewrite 2^t in terms of base e, so that it is e^(ln(2)*t). In general, the Laplace transform of e^(-k*t) is 1/(s + k). So when the coefficient on t is positive instead of negative, the addition turns into subtraction. The result is 1/(s - ln(2))

  • @alihamzamalik2730
    @alihamzamalik2730 3 роки тому

    Lalplace transform of 0

  • @adarshraj2878
    @adarshraj2878 Рік тому

    BolnA kya chahte ho

  • @zrmsraggot
    @zrmsraggot 2 роки тому

    All i saw is + - + - diagonal diagonal diagonal. Fk that i'm outta here

    • @carultch
      @carultch Рік тому

      That's the way integration by parts should be taught. I don't know why anyone bothers with the formula.

  • @brian_mcnulty
    @brian_mcnulty 3 роки тому

    You plugged zero for N when it should be inf.

  • @Studboo
    @Studboo 6 років тому

    :) LOL t^n has a direct formula :P

    • @blackpenredpen
      @blackpenredpen  6 років тому +3

      Chinmay Vlogs
      So?

    • @khryz1
      @khryz1 5 років тому

      Sometimes you need to prove the answer from the formula and i thank blackpenredpen that he doesnt think the way you do.

  • @dattabiradar3214
    @dattabiradar3214 6 років тому

    what is ans of 2^t