Solve differential equation with laplace transform, example 2

Поділитися
Вставка
  • Опубліковано 16 гру 2024

КОМЕНТАРІ • 101

  • @EagleLogic
    @EagleLogic 6 років тому +98

    Started the video, paused, went to my marker board and solved it! Then skipped to the end and I saw that I got it right. First time I have solved one of these on my own. Your help has been HUGE! Thank you!

  • @gigispence6011
    @gigispence6011 5 років тому +12

    Spent the last week panicking about Laplace transforms - all of that anxiety vanished after watching this video! Thank you

  • @OussamaAbuUmar
    @OussamaAbuUmar 4 роки тому +8

    You just taught me more than my professor taught me in a whole semester❤

  • @Conditional_Finality
    @Conditional_Finality Рік тому

    I dont really know why professors in my uni just does not go into this much depth into explaining a single example. The way he teaches me reminds me of my high school teacher who used to make complex problems easily digestible.

  • @ahmed_4294
    @ahmed_4294 11 місяців тому

    Seriously one of the best teachers I've ever encountered both on youtube and real life. I salute you! Thank you for explaining every detail of your solving and making sure we understand every step you take

  • @bizzysiru
    @bizzysiru 5 років тому +1

    i am a student on uni. at south korea.
    thx your class. it a big help for me.

  • @jemcel0397
    @jemcel0397 7 років тому +6

    I want to comment that you can use residue method to get A/s.
    To do so, we will consider P(s) = (s^3 + 2s^2 + 1)/(s^2 + 4).
    Then, we can differentiate P(s) but we have to divide it by n! where n is the number of times differentiation can occur. (In this case, n= 1) because s is only repeated once.
    P'(s) = [(3s^2 + 2s)(s^2 + 4) - 2s(s^3 + 2s^2 + 1)]/(s^2 + 4)^2
    From the previous cover-up: s = 0 so we have P'(0).
    Then, you can plug 0 into your function. After applying differentiation. You'll be surprised you'll get the same answer for A.

  • @sanmuga277
    @sanmuga277 6 років тому +5

    Dude You are the best !!!!!! I owe You 20 Marks!!!

  • @Zonnymaka
    @Zonnymaka 7 років тому +1

    Just for the sake of trying the convolution formula i solved the partial fractions s/(4+s^2) + 2/(4+s^2) + 1/[s^2(4+s^4)]. Nice!

  • @xuhanzhen8126
    @xuhanzhen8126 6 років тому +3

    学到了啊 待定系数还能这么拆 很棒的细节讲解

  • @ChefSalad
    @ChefSalad 6 років тому +1

    You can use cover-up to solve for C and D. Just make s=2i and substitute in. You get 2i+(-7)/(-4)=2i*C + D, therefore D = 7/4 and 2i=2i*C, thus C = 1. BAM!

  • @aanchalchaudhary16
    @aanchalchaudhary16 5 років тому

    your video makes concept crystal clear

  • @bernaskojohnarthur3660
    @bernaskojohnarthur3660 6 років тому +1

    Your tutorials are the best just that I'd like to comment on this and a previous video about this same IVP that you should note the way you write your (Y and y). It conflicts as to know which is the laplace and the inverse laplace, Just to help amateur like me. Thank you for your best explanation.

  • @user-wu8yq1rb9t
    @user-wu8yq1rb9t 2 роки тому +1

    Thank you so much dear Teacher 💖

  • @andersjohnson9065
    @andersjohnson9065 4 роки тому

    Watching this during my Calc 4 exam, thank you very much my dude

  • @latrellebrown7916
    @latrellebrown7916 5 років тому

    I don't sub often, I am about to graduate this year and you earned it!

  • @wisphyr
    @wisphyr Рік тому

    this guy saved my life

  • @marlenabigailrojogarcia5552
    @marlenabigailrojogarcia5552 5 років тому

    Me gustaría entenderte en el idioma pero observando tu procedimiento me a ayudado, gracias

  • @rutgerlight7492
    @rutgerlight7492 5 років тому +3

    You're a good tutor! Im about to comment because i got confused in the A/s +B/s2 ... but you discussed it well ahhaha slow clap*

  • @ayandamtolo8312
    @ayandamtolo8312 5 років тому +1

    Bro thanks so much for all youve taught me, in this case wouldn't it have been easier to solve using method of unconfirmed...

  • @yeyito3676
    @yeyito3676 5 років тому

    thank you so much for explaining where the partial fraction decomposition comes from!

  • @skshabbir1012
    @skshabbir1012 6 років тому

    Lots of love for you sir.. 😍😍😍
    From Bangladesh..
    Your method was super easy to get the problem..

  • @5stepshred300
    @5stepshred300 6 років тому +8

    Sorry man but I had to....
    Pause the video to comment and give you a thumbs up! So glad I subscribed, great work!! Thank you!!

  • @braskcovroldinin8816
    @braskcovroldinin8816 2 роки тому

    This vid helped me more then books

  • @wync2203
    @wync2203 6 років тому

    woaahh i never knew laplace is this easy..thank you sir, tutorial appreciated!

  • @MrKristian252
    @MrKristian252 2 роки тому

    Thanks a ton, now I feel very motivated

  • @john-athancrow4169
    @john-athancrow4169 6 років тому +11

    Yes, I just said "isn't it?" just like Y O U ! ! !

  • @VivianBacanto-i9w
    @VivianBacanto-i9w 29 днів тому

    Hey at time 12:48, it should be s / s^2 + 2^2, you missing out s at the numerator on the 2nd inverse Laplace Term😢.

  • @MrSimmies
    @MrSimmies Рік тому

    Absolutely perfect job. Thanks!

  • @1StraightPath2Islam
    @1StraightPath2Islam 5 років тому

    Great job man, really good explanation. I think whats so hard to understand is how the denominator is split up into A, B etc. I've taken earlier courses that covered it, but not in the same extend that these exercises need.

  • @tiibrahim5714
    @tiibrahim5714 6 років тому

    You've helped me a lot thanks

  • @petersonkomane2689
    @petersonkomane2689 2 роки тому

    is there a playlist for this kind of problem's?

  • @HandlingSmilus
    @HandlingSmilus 2 роки тому

    Math is beautiful

  • @cjdiaz1099
    @cjdiaz1099 5 років тому

    this deserves more likes than those useless travel vlogs

  • @damiandassen7763
    @damiandassen7763 6 років тому

    5:00 20 seconds does not equal 50 seconds unless we are moving fast away from each other and relativistic effects take over.

  • @obeidaalamery1028
    @obeidaalamery1028 6 років тому

    Very good

  • @ibrahimelosta7422
    @ibrahimelosta7422 4 роки тому

    The best

  • @john-athancrow4169
    @john-athancrow4169 6 років тому

    If that s³+2s²+1 was s³+2s²+s, you would do: s³+2s²+s=s(s²+2s+1)=s(s+1)²

  • @falkinable
    @falkinable 6 років тому

    Great work! Technically shouldn’t all of this be multiplied times the unit step function, which would be the same as saying “for t >= 0?”

  • @swkit125
    @swkit125 Місяць тому

    I learned this in process control

  • @mcqueenweiyang3855
    @mcqueenweiyang3855 3 роки тому

    may i know why so i have to add CS + D and your peevious dont need?

    • @carultch
      @carultch Рік тому

      For linear terms, you only need a constant for the numerator.
      For irreducible quadratic terms, you need to set up a linear term for the numerator.
      If you had an irreducible cubic, you'd use a quadratic term for its numerator. It wouldn't help you very much for either integration or Laplace transforms, but that's what you'd do in concept.
      In general, the polynomial on the top, is one degree less than the polynomial on the bottom. Sometimes, the linear factor turns out to just be a constant, other times, the linear factor turns out to only be the term with the variable

  • @ronaldrosete4086
    @ronaldrosete4086 4 роки тому

    I can't find your Laplace playlist.

  • @ayshaalshamsi8330
    @ayshaalshamsi8330 5 років тому

    Thank you so much!😭😭💕💕

  • @walter8154
    @walter8154 4 роки тому

    your voice is asmr to my ears

  • @vahdetdelikaya1696
    @vahdetdelikaya1696 2 роки тому

    Love this!

  • @sajjadkareem608
    @sajjadkareem608 5 років тому +1

    Best way to solve DE is with Laplace Tf

    • @harleyspeedthrust4013
      @harleyspeedthrust4013 3 роки тому +1

      agreed, unless u dont have initial conditions then my favorite way is variation of parameters

  • @davitgurgenidze6307
    @davitgurgenidze6307 4 роки тому

    very kind smile

  • @Flanlaina
    @Flanlaina 4 роки тому +1

    I distinguish my s and my 5 using cursive handwriting

  • @ServitorSkull
    @ServitorSkull 2 роки тому

    that pen swish doh 15:10. Swag

  • @juniorjay001
    @juniorjay001 4 роки тому

    wow. thank you

  • @amabellesantos4049
    @amabellesantos4049 6 років тому

    Thank you

  • @tarekkhalifa8634
    @tarekkhalifa8634 3 роки тому

    ليه حطيت T=1/s^2 ???

  • @katherinebaloch7419
    @katherinebaloch7419 6 років тому

    What is the laplace of sint

    • @carultch
      @carultch Рік тому

      1/(s^2 + 1)
      Cosine has the s up top, sine has the constant.

  • @MajedHQ14
    @MajedHQ14 5 років тому

    Is that a microphone

  • @edwin996633
    @edwin996633 7 років тому +1

    Weird thing. My teacher use this equation in our assignment

    • @xxslysinxx
      @xxslysinxx 7 років тому +10

      Did you write your answer in black pen and red pen?

  • @hanaa.r_
    @hanaa.r_ Рік тому

    I don't understand at 6:45

    • @hanaa.r_
      @hanaa.r_ Рік тому

      How when 1/4 we put in A

  • @john-athancrow4169
    @john-athancrow4169 6 років тому

    Aha! You want to look the 4 as 2², isn't it?

  • @rashidibrahim979
    @rashidibrahim979 4 роки тому

    I found "A" to be 1/2 no zero

  • @syavv7514
    @syavv7514 5 років тому +1

    I love youuuuu

  • @lucvaniperen3964
    @lucvaniperen3964 6 років тому

    Bedankt maat!

  • @skinnyqueen7896
    @skinnyqueen7896 Місяць тому

    you need a lapel

  • @shirashira8871
    @shirashira8871 2 роки тому

    how we can get D=7/4
    like how 2 become 8/4 - 1/4 = 7/4
    just how that 2 become 8/4
    sorry if my question is so complicated .

    • @carultch
      @carultch Рік тому

      Given:
      (s^3 + 2*s^2 + 1)/(s^2*(s^2 + 4))
      I like to set up the terms for Heaviside coverup first, which in this case is A:
      A/s^2 + B/s + (C*s + D)/(s^2 + 4)
      At s=0, cover up s^2, and find A:
      A = (0+0+1)/(0^2 + 4) = 1/4
      Reconstruct:
      (s^3 + 2*s^2 + 1)/(s^2*(s^2 + 4)) = 1/4/s^2 + B/s + (C*s + D)/(s^2 + 4)
      Multiply by s, to partially clear the fraction:
      (s^3 + 2*s^2 + 1)/(s*(s^2 + 4)) = 1/4/s + B + (C*s^2 + D*s)/(s^2 + 4)
      Take the limit as s goes to infinity, to set up our first equation:
      1 = 0 + B + C
      B = 1 - C
      Pick two values of s we haven't used yet, to create two more equations. I'll choose s=1 & s = -1
      s=1:
      (1^3 + 2*1^2 + 1)/(1^2*(1^2 + 4)) = 1/4 + B + (C + D)/(1 + 4)
      4/5 = 1/4 + B + (C + D)/5
      20*B + 4*C + 4*D = 11
      s = -1:
      ((-1)^3 + 2*(-1)^2 + 1)/((-1)^2*((-1)^2 + 4)) = 1/4/(-1)^2 + B/(-1) + (C*(-1) + D)/((-1)^2 + 4)
      2/5 = 1/4 + -B + (-C + D)/5
      8 = 5 + -20*B + 4*(-C + D)
      -20*B - 4*C + 4*D = 3
      Add equations to cancel B & C terms and solve for D:
      8*D = 14
      D = 7/4
      Use original equations to solve for B&C:
      20*B + 4*C + 4*7/4 = 11
      5*(1 - C) + C = 1
      -4*C + 5 = 1
      C = 1
      B = 1-1 = 0
      Result:
      1/4/s^2 + (s + 7/4)/(s^2 + 4)

  • @phindulobidi7709
    @phindulobidi7709 5 років тому +1

    His using 2 markers one hand

  • @hakeemnaa
    @hakeemnaa 2 роки тому

    not difficult,
    but very easy to make a mistake

  • @sunainas7906
    @sunainas7906 5 років тому

    This is so tough

  • @AndreSimoni94
    @AndreSimoni94 7 років тому +1

    hm, so you don`t use the +1...

    • @5stepshred300
      @5stepshred300 6 років тому

      Good observation, did you forget to use the +1?

    • @blackwatch7572
      @blackwatch7572 5 років тому

      hahahahaha temos um ancap por aqui.

  • @MrNdog1000
    @MrNdog1000 7 років тому

    Pointing out the seemingly obvious, but you forgot to multiply by 2 inside the cosine inverse LaPlace and the 1/2 outside, so it should be 1/2* cos(2t)

    • @blackpenredpen
      @blackpenredpen  7 років тому +5

      Steven Tucker u only have to do that for sine. Cos is ok

  • @rob876
    @rob876 6 років тому +1

    Worst way to solve a linear ODE. How about a non-linear ODE example?

  • @joshuamitchell359
    @joshuamitchell359 6 років тому +2

    The way you do partial fractions doesn't make a bit of sense...

    • @blackpenredpen
      @blackpenredpen  6 років тому

      Which part confused you?

    • @joshuamitchell359
      @joshuamitchell359 6 років тому +2

      @@blackpenredpen Actually, I totally confused myself while I was doing the problem along with you. I missed an "s." It made perfect sense! Sorry about the inconvenience!

    • @blackpenredpen
      @blackpenredpen  6 років тому +1

      Joshua Mitchell I see. 😎

  • @tjtaneja1285
    @tjtaneja1285 5 років тому

    Literally the partial fractions is so unnecessary and it takes up over half the video, without taking the common denominator and keeping it as three seprate fractions we coud have taken the inverse laplace much easier with a VERY easy convolution to solve at the end

    • @harleyspeedthrust4013
      @harleyspeedthrust4013 3 роки тому +1

      yes but in general you want to avoid convolutions. the point of the laplace transform is to solve the problem without actually doing calculus, so if you can find partial fractions then you should do that instead

  • @john-athancrow4169
    @john-athancrow4169 6 років тому

    But… no.

  • @ahmedmohammedshaaban9248
    @ahmedmohammedshaaban9248 5 років тому

    His English is so bad

  • @kibetbera9194
    @kibetbera9194 6 років тому +1

    Thank you

  • @ElifArslan-l9g
    @ElifArslan-l9g 2 роки тому

    thank you