Math Olympiad | A Nice Exponential Problem | VIJAY Maths

Поділитися
Вставка
  • Опубліковано 27 лис 2024

КОМЕНТАРІ •

  • @Quest3669
    @Quest3669 4 дні тому +2

    X+1/x= 4 or x^ 2-4x+1= 0
    (X- 2)^ 2=3 or x= +-√3+(2)

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq 3 дні тому +1

    [Time slot 3-56 onwards
    Application of a^2 - b^2=(a+b)(a-b) cancels the denominator and for such a solution sir, u did not get another quadratic equation ]
    Here is the solution
    We may get the following equation when we divide the numerator and denominator by x ^7
    (x^2 +1/x^2 +1)/(x +1/x +1) =3
    > (x +1/x)^2 -2x*1/x +1)/(x +1/x +1) =3
    >(a^2 -1)/(a+1)=3 ( **pl note that here we did not use a^2 - 1=(a+1)(a-1) to cancel out the denominator)
    >a^2-1=3a +3
    > a^2 -3a -4= 0
    >(a -4)(a+1)=0
    Hence
    a=4 or -1
    When a =4
    then x + 1/x =4
    >x ^2 -4x +1= 0
    x = 2 +/- √3
    If a = -1
    then x +1/x =-1
    x = (-1+/- √3i )/2

    • @kareolaussen819
      @kareolaussen819 2 дні тому

      a=-1 is not a valid solution of the original equation, just like x=0 is not. The left hand side are undefined for exactly these values. The limits as x->0 or a->-1 do not satisfy the equation either.

    • @PrithwirajSen-nj6qq
      @PrithwirajSen-nj6qq 2 дні тому

      @@kareolaussen819
      May I request u to watch the video from 1-20 to 1-34?
      We see a reduced form of the given equation in this time slot.
      If we cross multiply this reduced form, we will get
      An equation of degree 4 that means we will get 4 roots.
      You cited logic to refute 4 solutions and advocated for two solutions.
      I think that u are thinking of my four solutions will be meaningful at a time.
      But such solution states that at any single time one and only one solution is accepted.

    • @kareolaussen819
      @kareolaussen819 2 дні тому

      @@PrithwirajSen-nj6qq By cross multiplying you introduce false solutions:
      (a^2 - 1)/(a+1) = (a-1)(a+1)/(a+1) = 3.
      The left hand side (LHS) is undefined for a=-1. But lim_{a - >-1} LHS = -2, different from 3.

  • @vrdacosta00
    @vrdacosta00 4 дні тому +1

    👍👏👏

  • @raghvendrasingh1289
    @raghvendrasingh1289 4 дні тому +1

    Good problem ❤

  • @kareolaussen819
    @kareolaussen819 4 дні тому

    Divide numerator and denominator by x^7, and introduce u=x+1/x to get equation
    (u^2-1)/(u+1)=u-1=3.
    Next solve x+1/x=4 or (x-2)^2=4-1=3 to get
    x = 2 ± √3

    • @ΕυριπίδηςΛόης
      @ΕυριπίδηςΛόης 3 дні тому

      You should not cancel u+1

    • @kareolaussen819
      @kareolaussen819 2 дні тому

      @@ΕυριπίδηςΛόηςSure I can! The left hand side is undefined when u=-1 and x=0, so these do not lead to a valid solutions of the original equation. By rewriting the equation to polynomial form one introduces false roots.