Imaginary Numbers Are Not Imaginary | Jeff O'Connell | TEDxOhloneCollege

Поділитися
Вставка
  • Опубліковано 13 лис 2019
  • In the world of mathematics, where numbers are tangible and real concepts, how do you respond to the unknown? Imaginary numbers are used to define something that otherwise is undefined. In this TED talk, Professor Jeff O'Connell, explains to us why imaginary numbers aren't imaginary, and why it redefines our understanding of mathematics and life. Professor Jeff O’Connell is a proud community college graduate with an AA degree from Diablo Valley College. He has his Bachelors in Applied Math from UC Davis and a Masters in Math from San Jose State University. He started teaching in the Ohlone College Math Department in 1995. In addition to teaching classes, Jeff has given several speaker series talks, including Math is Beautiful, the Golden Ratio, Card Counting, as well as Math in the Movies and on T.V. He is one of the teachers in the Ohlone Math Gateway Program which helps STEM majors accelerate math courses while fulfilling other requirements. This past summer, he completed an Ignited Summer Fellowship in the Dynamic Design Lab at Stanford University where they study the design and control of motion, especially as it relates to vehicle safety.
    Pronouns: He/him/his This talk was given at a TEDx event using the TED conference format but independently organized by a local community. Learn more at www.ted.com/tedx

КОМЕНТАРІ • 78

  • @MrBeen992
    @MrBeen992 3 роки тому +79

    He didnt make the connection between the imaginary numbers and the oscillatory motion he described at the beginning.

    • @_ArtofLife
      @_ArtofLife 4 дні тому

      I was thinking the exact same thing...

  • @Vonwra
    @Vonwra 2 роки тому +13

    He did not reveal anything extra ordinary. 30 seconds of insight spread over 10 minutes.

    • @Player-pj9kt
      @Player-pj9kt 6 місяців тому

      This video is meant to be an introduction to complex numbers not an extraordinary revelations. If you want to read something extradition then read a mathematic/ science journal

  • @sachinnaidoo1559
    @sachinnaidoo1559 9 місяців тому +2

    Man's secretly a hypnotist making the audience imagine the imaginary numbers

  • @rehakmate
    @rehakmate 3 роки тому +52

    Is it just me or did this video not explain anything, like what was the point of this?

    • @chronicsnail6675
      @chronicsnail6675 3 роки тому +3

      TedTalks...

    • @MrBeen992
      @MrBeen992 3 роки тому +9

      You are completely right. He didnt make the connection between the imaginary numbers and the oscillatory motion he described at the beginning.

    • @MrBeen992
      @MrBeen992 3 роки тому

      @Samson Jamari you dont have a girlfriend, incel

    • @rehakmate
      @rehakmate 3 роки тому

      @Samson Jamari lol

    • @mingledspringle
      @mingledspringle 3 роки тому

      @Samson Jamari das crazy yo but who asked

  • @uwelinzbauer3973
    @uwelinzbauer3973 6 місяців тому

    Brilliant and convincing introduction to this interesting topic - to be continued on and on. Certainly he is able to share the enthusiasm with the audience

  • @NoAnimePD
    @NoAnimePD 4 роки тому +2

    Best professor!

  • @MrFanBoyDee
    @MrFanBoyDee 4 роки тому +3

    i wish i could like this more than once

  • @peta1001
    @peta1001 29 днів тому

    I personally went a long way passing math exams which proved only the fact that I can follow the rules and the routines. However, accepting the "command" that negative numbers exist set me off what seems to be a natural logic or intuition. Why, I thought a lot? When we count pocket coins or "rocks on the beach", we either have them or we do not (the sum is either zero or greater than zero). When we measure something, though, as it may be a distance between two points or our body temperature, we might accept that having a refence point is practical way to express that some things are on the other (opposite) side (like temperatures below freezing point or tuning frequencies of music notes etc.).
    Yet, even though we accepted that reference points are only practical for labeling scalar values, someone decided to build on the "convenient truth" and stated that "negative number" to the power of two is always a positive number. That definitely excludes the possibility that we use the exponentiation on the other side of the reference points (temperature values below zero raised to the power of two, for instance, give you the same result as the positive numbers...). What scares me the most is...how far in quantum mechanics, which is trying to get ideas from the math (full of "convenient truths"), can we get. Do we really want to believe that one particle can me in two places at the same time? Or...is it a high time we got rid of convenient truths and/or approximations (that some mathematicians questioned through history...) and than tried to understand the quantum mechanics and the string-theory.

  • @markelijohnjavierpascual4112
    @markelijohnjavierpascual4112 4 роки тому

    nice. we need new math about this

  • @ellmango
    @ellmango Рік тому +5

    the presenter started with very easy to grok examples, and then introduced the "we need to know square root of -1" as though the beginning examples showed that, without illustrating why that would be in any way.

    • @Player-pj9kt
      @Player-pj9kt 6 місяців тому +1

      You have to learn about differential equations to understand why

    • @eyobwalid2332
      @eyobwalid2332 4 місяці тому

      Bold of you to assume enough people know about differential equations for that to be a reasonable statement

    • @carultch
      @carultch 3 місяці тому

      @@eyobwalid2332 I don't think Player was assuming that the audience knows differential equations. Just that in order to give a proper introduction to show why these examples have anything to do with sqrt(-1), would require an introduction to differential equations that would significantly make the lecture longer and probably lose half the audience.

    • @carultch
      @carultch 3 місяці тому

      If you are wondering the reason why his examples have anything to do with sqrt(-1), here's why.
      A differential equation that models vibrations, like the mass on a spring, is given by:
      m*y" + k*y = 0
      where m is the mass, and k is the spring stiffness. y is the position of the spring at any point in time t. y" refers to 2nd derivative of y, which in this case is acceleration.
      One of the strategies for solving a DiffEQ in this form, is to assume y = e^(r*t), where e is a constant called Euler's number, and r is an unknown constant we'll solve for.
      Applying this to the DiffEQ, we end up with:
      (m*r^2 + k) * e^(r*t) = 0
      e^(r*t) cannot be zero, so instead we solve the polynomial in front of it for r, to make that polynomial zero.
      Had the sign in front of k been negative, we'd have real solutions for r, equal to +/-sqrt(k/m). The solution then, would be a linear combination of exponential functions. However, the solutions are imaginary, and r = +/-sqrt(k/m)*i. Assign w to equal sqrt(k/m), to simplify our writing.
      This means the general solution is a linear combination of both of them. Assign arbitrary constants C1 & C2, to form this linear combination:
      y = C1*e^(i*w*t) + C2*e^(-i*w*t)
      Let C1 = (A + B*i)/2, and let C2 = (A - B*i)/2, where A and B are another two arbitrary constants. Our goal is to cancel the imaginary parts we'll eventually produce, so we can find a real world solution for y.
      y = (A + B*i)/2*e^(i*w*t) + (A - B*i)/2*e^(-i*w*t)
      Expand out e^(i*w*t) and e^(-i*w*t) with Euler's formula:
      e^(i*w*t) = cos(w*t) + i*sin(w*t)
      e^(-i*w*t) = cos(w*t) - i*sin(w*t)
      y = (A + B*i)/2*[cos(w*t) + i*sin(w*t)] + (A - B*i)/2*[cos(w*t) - i*sin(w*t)]
      After expanding it, you'll eventually cancel out all i's. The B/2*i*sin(w*t) terms add up, and so do the A/2*cos(2*t) terms.
      y = A*cos(w*t) + B*sin(w*t)
      And just as you expect, an oscillation is described by a linear combination of sine and cosine waves. No i's anywhere in this, which means this all happens in real numbers. But to show it from first principles, we had to appeal to imaginary numbers.

  • @mahmudurrahman5759
    @mahmudurrahman5759 3 роки тому

    شكراً

  • @gudnavar
    @gudnavar 2 роки тому +3

    The title of the talk brought me to click on this video but nothing really revealed. There are another 8 minutes to explain further. There are other videos (example by Welch Labs) that explain the concept in depth.

  • @brunoborma
    @brunoborma 3 роки тому +12

    He didnt explain why 😭

  • @cucumber_999
    @cucumber_999 3 роки тому

    yeah I thought so

  • @saroshrizvi2498
    @saroshrizvi2498 4 роки тому +9

    Best prof at Ohlone. No 🧢

  • @davidroux7987
    @davidroux7987 Місяць тому

    One can describe damped oscillations with purely real numbers... e^(-gamma*t) * cos(omega*t +phi)

  • @homayonreah1955
    @homayonreah1955 21 день тому

    What space/ deep meaning imaginary numbers represent(generally)??

  • @jiahajime5815
    @jiahajime5815 4 роки тому

    Wheres the sub?

  • @homayonreah1955
    @homayonreah1955 21 день тому

    How can e^iπ which is a positive number be -1 ?

  • @bhaskarvk5558
    @bhaskarvk5558 11 місяців тому +1

    I like your lectures sir , I'm from 9th standard😊

  • @paigeluben4970
    @paigeluben4970 4 роки тому

    Totally reminds me of Alton Brown!!

  • @user-ky5dy5hl4d
    @user-ky5dy5hl4d 9 місяців тому +1

    This guy just proved that math was invented and not discovered. He also absolutely did not explain imaginary numbers in terms of not imaginary numbers. He just said that imaginary numbers are not imaginary. That's not proof. But I saw Superman flying on TV. Also, pendelum has nothing to do with time. I repeat: mechanism such as pendelum or a clock have nothing to do with time.

  • @laquan3661
    @laquan3661 Рік тому +2

    Imaginary...aren't negative numbers technically imaginary? If not, physically represent a negative amount of anything as you would show me a positive amount of apples. If physically representable is the standard of real numbers, then the only real numbers are positive numbers. If non-positive numbers can be real, then a number that is non-positive and non-negative can be real also.

    • @jmhorange
      @jmhorange 8 місяців тому +4

      Real numbers are one dimensional. Imaginary numbers help make numbers 2 dimensional with special properties around multiplication for the imaginary number, namely i is a 90 degree rotation on a graph that repeats every 4 cycles under exponents. Multiplication of course doesn't work that way with real numbers. The names themselves are not important, it's just positive and negative numbers need to be in the same group of numbers since they share all the same properties and we have chosen to call that group, real numbers. Real numbers, negative numbers, imaginary numbers are technically "real" numbers if any number are real. Imaginary numbers were discovered when trying to solve cubic equations, which involved 3 dimensions and cubes, ie the real world we live in. Unlike quadratic equations where if they encountered square roots of negative numbers, they could decide there was no answer as visually on a graph it means the quadratic equation doesn't touch the x axis to have an real number answers, cubic equations have to cross the x axis at least at one point to give an answer because of their shape. There's some cubic equations with real numbers, that has an answer that's a real number. And for these specific equations, if you use the cubic formula, you must encounter the square roots of negative numbers. These eventually cancel out while doing the math to get the real number as an answer but you have to reckon with how to solve for the square roots of negative numbers to solve the formula. That's the original reason for the number i.
      With that you can solve for any answer in a cubic or any polynomial of n degrees, it will have n degree solutions. You can go back and solve for the answers of those quadratic equations that didn't seem to visually touch the x axis to have an answer. If they aren't found among the reals, they'll be found in the imaginary plane. All those imaginary answers perhaps don't exist in the real world, but the logic behind those imaginary answers stem from the original solution of specific real world cubic equations that had real numbers, that you had to pass thru the imaginary plane to arrive at the real number answer.

  • @sirasapbflo510
    @sirasapbflo510 4 роки тому +2

    Yesterdays appetizer: Casadilla

  • @Sciencedoneright
    @Sciencedoneright 3 роки тому +5

    TOTALLY REMINDS ME OF WELCH LABS

  • @luigimelon3334
    @luigimelon3334 4 роки тому +1

    pog!

  • @Charlie-vj9rf
    @Charlie-vj9rf 3 роки тому

    You need closed captioning

  • @braydencoversbeatles4029
    @braydencoversbeatles4029 Місяць тому

    This should've went on for another 20 minutes

  • @Thegeometer-ep3sj
    @Thegeometer-ep3sj 4 роки тому

    Excellent job!! One of the very best educators at Ohlone!

  • @pelasgeuspelasgeus4634
    @pelasgeuspelasgeus4634 7 місяців тому +1

    How do we know that the axis of imaginary numbers crosses at point 0 of the axis of real numbers?

    • @carultch
      @carultch 3 місяці тому +2

      Consider z^2 = a, where z is a complex variable, and a is a real constant.
      When a is positive, we have a real solution for z. Two real solutions, which are +/-sqrt(a).
      When a is negative, we have no real solutions for z, and only imaginary solutions. Two imaginary solutions, which are +/-sqrt(|a|)*i.
      Adjust a slowly, and determine what happens as a approaches zero. Both of the two real solutions approach zero as a approaches zero from the positive. Additionally, both of the imaginary solutions approach 0*i, as a approaches zero from the negative.
      This means, that as a approaches zero in general, the solutions for z approach 0 + 0*i. This is the space where the two solutions for z crash into each other, and split to go along the other axis. The path of these roots is continuous, with a sudden change in direction at this point. This is how we know the real and imaginary axes intersect, instead of being skew lines that never intersect.

    • @8ball708
      @8ball708 2 місяці тому

      @@carultch That's a great explanation, thanks!

  • @sepulous
    @sepulous Місяць тому

    I was hoping he would use the oscillatory motion to concretely show a situation in which complex numbers are necessary for describing a real world phenomenon. Like MrBeen said, he just didn't make that connection, and that's a bit disappointing.

  • @dasmegacool
    @dasmegacool 3 роки тому +3

    That fools left hand was moving all over the place I saw him dab a few times!!!

    • @Professor_O
      @Professor_O 3 роки тому +2

      I did the best I could 😜

  • @StevenSiew2
    @StevenSiew2 7 місяців тому

    I was taught that e^(i theta) = cis(theta)
    so
    e^(i male) is a cis(male)
    and
    e^(i female) is a cis(female)

    • @carultch
      @carultch 3 місяці тому

      Completely unrelated meaning of cis.
      Cis in this context, is a notation for cos(theta) + i*sine(theta). The c from cosine, the i from the imaginary unit, and the s from sine.
      Cis as in cismale and cisfemale, is the opposite of trans, and is a loanword from chemistry's use of the word. Look up cis and trans isomers, and it will make perfect sense to you, why cismale and cisfemale mean ordinary male and ordinary female.

  • @godofgodseyes
    @godofgodseyes 4 роки тому +3

    Jeff O'connell, Can you show me imaginary number representations with apples, oranges and bananas?
    Hope you can think simple things deep.

    • @robogamer2023
      @robogamer2023 4 роки тому

      Yes you can

    • @Professor_O
      @Professor_O 3 роки тому +5

      Haha - I guess I should check the comments more often. Sorry for the late reply! The answer is no! Imaginary and complex numbers will never be the answer to a real life application. They are a tool that allow us to solve real life applications. I hammer is a tool that, all by itself is not that impressive, but what you can do with a hammer...

    • @chronicsnail6675
      @chronicsnail6675 3 роки тому +1

      @@Professor_O bro how is hammer comparable to the imaginary unit smh ur not teaching maths 😂

    • @Player-pj9kt
      @Player-pj9kt 6 місяців тому

      ​@@Professor_Oimaginary numbers are essential for understanding circuits and current flow

  • @abhishekgusain1082
    @abhishekgusain1082 3 роки тому +2

    Oiler🤣🤣

  • @dhananjeyannatarajan5366
    @dhananjeyannatarajan5366 3 роки тому

    wassup

  • @enochsadventures
    @enochsadventures 3 роки тому

    they are imaginary.

  • @syedarsalanahmad
    @syedarsalanahmad 3 роки тому +3

    You know which number I made up? Klevin. And Gaupp. I feel sad for those who don't understand this 😂

    • @MyOneFiftiethOfADollar
      @MyOneFiftiethOfADollar 7 місяців тому

      I feel equally sad for your parents and anyone else who has to keep your company for extended periods.

  • @YashKakrecha
    @YashKakrecha 3 роки тому +3

    27M subscribers and 7k views...

  • @ellmango
    @ellmango Рік тому +3

    the presenter didnt fully explain a single line of thinking that wasnt already assumed to be understood by the audience.

  • @edwinlu123
    @edwinlu123 3 роки тому +14

    He couldn't explain anything. Maybe it's like a cult.

    • @Player-pj9kt
      @Player-pj9kt 6 місяців тому

      You have to learn about differential equations to understand how it relates to springs and pendulums

  • @professormawillett4297
    @professormawillett4297 2 роки тому +1

    Nah, they’re just a tool to understand the real world.

    • @user-ky5dy5hl4d
      @user-ky5dy5hl4d 9 місяців тому

      Imaginary numbers explaining the real World? Probably a joke.

    • @digitalbook8503
      @digitalbook8503 8 місяців тому

      @@user-ky5dy5hl4d I think real no. are symbols and along with axioms and operations, we use them solve real physical problems like geometric problems and things which we can touch and feel their existence. But at some point in history when mathemasians tried to solve problems like cubic equations, BTW in past mathematicians justify each step of solution by giving proof using geometrical shapes or other things which we can count or measure like when solving 2+x=6 mathimaticians solve it by imagining that there are 2kg and a weight of X kg on one side of beam balance and 6kg mass on otger side of beam balance so when we do 2+x-2 = 6-2 they justify this by saying that we are removibg 2kg weight on both side as the wieght on one side of balance left is x and other is 4 and it is balaced so it means that X wieghts 4kg so x=4 but at solving cubic equations they came across some steps in solution which have square root of -1, but there is no such thing in the world which can make sense i mean when i say square root of 4 it means 2 so mathematican immediately at that would place 2 apple or 2 meter length depending upon which physical thing they are using to justify each step, but when they started solving for cubic eq they find that square root of -1 occur in the middle step as an intermediate but at the end in the result such numbet cancel out and gave only answer in real no. Only. But they said how can we justify that step having square root of -1 because no such thing exist in nature so they said why not we form a number system which is multiple of square root of -1 though they don't have physical interpertation but they can be used in middle step of solving real world problem so these numbers were invented to help algebric calculations not to count physical thing but when complex plane was formed they thougt that, since square root of -1 make numbers on number line rotate so can be useful to take track of such system which in teal world rotate by asinghing one quatity to real axis and other to imaginary axis but remember imaginary numbers unlike real number are not invented to count physical things but they were invented for algebric world to solve its problems and the answer of real world problems but imaginary part at the end will cancel and answer will be in real numbers always! If real world answer is possible and if it don't come than it means it don't have real world solution!

    • @Player-pj9kt
      @Player-pj9kt 6 місяців тому

      ​@@user-ky5dy5hl4dthey are essential for circuit analysis and current flow

  • @savagedeuterium374
    @savagedeuterium374 3 роки тому +4

    Really a waste, nothing explained.

  • @soikatmaji4685
    @soikatmaji4685 2 роки тому +3

    totally waste of time

  • @q.m9094
    @q.m9094 3 роки тому +3

    This was the absolute worst ted talk.
    Waste of time.

  • @High_Priest_Jonko
    @High_Priest_Jonko Рік тому +1

    Terrible talk

    • @MyOneFiftiethOfADollar
      @MyOneFiftiethOfADollar 7 місяців тому

      Please share your immense intellect by enumerating your reasons the talk was terrible.