Mastering Systems of Equations: A Dual Approach Tutorial

Поділитися
Вставка
  • Опубліковано 18 гру 2024

КОМЕНТАРІ • 7

  • @RashmiRay-c1y
    @RashmiRay-c1y 9 місяців тому +3

    Let x + y = a and xy = b. Then the given equations read a+b+1 = 12 > a+b = 11 and ab = 30. So, b = 30/a and therefore a + 30/a = 11 > a^2 - 11a = 30 > a = 6, b= 5 or a = 5, b =6. If a= 6, b= 5, x+y = 6 and y = 5/x > x^2 - 6x + 5 = 0 > (x,y) = (5,1), (1,5). If a= 5, b=6, x+y = 5 and y = 6/x > x^2 - 5x + 6 = 0 > (x,y) = (3,2), (2,3).

    • @lukaskamin755
      @lukaskamin755 9 місяців тому

      More reasonable is to choose linear dependence, substitute into nonlinear, anyways you receive the same equation

  • @ManjulaMathew-wb3zn
    @ManjulaMathew-wb3zn 9 місяців тому +2

    a+b=11 and ab=30
    (a-b)^2=(a+b)^2-4ab=121-120=1
    a-b=+/-1
    Now solve 2 sets of equations
    a+b=11 and a-b=1 gives a=6 and b=5
    a+b=11 and a-b =-1 gives a=5 and b=6
    Use similar method to determine x and y.

  • @abcekkdo3749
    @abcekkdo3749 9 місяців тому +2

    X.Y=3or2

  • @nicholasngo5428
    @nicholasngo5428 9 місяців тому +1

    x=2, y=3

  • @shazhu2455
    @shazhu2455 9 місяців тому +1

    Factorize instead of using formulas.

  • @SidneiMV
    @SidneiMV 9 місяців тому +1

    xy + (x + y) + 1 = 12 => xy + (x + y) = 11
    xy(x + y) = 30 => x + y = 30/(xy)
    xy + 30/(xy) = 11
    (xy)² - 11xy + 30 = 0
    xy = (11 ± 1)/2
    xy = 6 or xy = 5
    xy = 6 => y = 6/x
    6 + x + 6/x = 11
    x² - 5x + 6 = 0
    x = (5 ± 1)/2
    *x = 3 => y = 2*
    *x = 2 => y = 3*
    xy = 5 => y = 5/x
    5 + x + 5/x = 11
    x² - 6x + 5 = 0
    x = (6 ± 4)/2
    *x = 5 => y = 1*
    *x = 1 => y = 5*