Math Olympiad Question | A Nice Algebra Problem | VIJAY Maths

Поділитися
Вставка
  • Опубліковано 5 лис 2024

КОМЕНТАРІ •

  • @sandytanner9333
    @sandytanner9333 Місяць тому +1

    (√1.5)(81/16)

  • @Psykolord1989
    @Psykolord1989 Місяць тому +1

    Before watching:
    (a/b)^c = (a^c)/(b^c). Further, (a^m)^n = a^(mn). Since 9 = 3^2 and 4 = 2^2...
    (9/4)^(9/4) = ((3^2)/(2^2))^(9/4)
    = ((3/2)^2)^(9/4)
    = (3/2)^(2(9/4))
    = (3/2)^(9/2)
    = (3/2)^4.5
    = (3/2)^4 * (3/2)^(1/2)
    = (81/16)√(3/2)
    = (81√3)/(16√2)
    If your teacher demands that there no be radicals in the denominator, multiply by √2/√2 to get (81√6)/32.

  • @key_board_x
    @key_board_x Місяць тому +1

    = (9/4)^(9/4)
    = (3²/2²)^(9/4)
    = [(3/2)^(2)]^(9/4) → recall: [x^(a)]^(b) = x^(ab)
    = (3/2)^[2 * (9/4)]
    = (3/2)^(9/2)
    = (3/2)^[(8 + 1)/2]
    = (3/2)^[(8/2) + (1/2)]
    = (3/2)^[4 + (1/2)] → recall: x^(a + b) = x^(a) * x^(b)
    = (3/2)^(4) * (3/2)^(1/2)
    = (3⁴/2⁴) * (3/2)^(1/2)
    = (81/16) * (3/2)^(1/2) → recall: x^(1/2) = √x
    = (81/16) * √(3/2)
    = (81/16) * (√3)/(√2) → you multiply by (√2) the bottom, so the top too (to eliminate √ at denominator)
    = (81/16) * [(√3).(√2)/(√2).(√2)]
    = (81/16) * (√6)/2
    = (81 * √6)/(16 * 2)
    = (81 * √6)/32
    = (81/32).√6

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 Місяць тому

    {20.1+9}=21.0 10^20^10 10^2^10^10 2^5^2^2^5^2^5 1^1^1^1^1^2^1 2^1 (x ➖ 2x+1).