Can you calculate area of the Yellow Square? | (Triangle) |

Поділитися
Вставка
  • Опубліковано 25 січ 2025

КОМЕНТАРІ • 28

  • @sunilnanda5581
    @sunilnanda5581 Місяць тому +4

    ❤❤❤

    • @PreMath
      @PreMath  Місяць тому

      Many thanks, dear ❤️

  • @Micboss1000
    @Micboss1000 Місяць тому +3

    You can use the 3-4-5 pythagorean triplet to calculate the sides as a factor of X instead of the similar triangles method. So EF being the 3-side makes it 3/3X, that makes CF 4/3X and CE 5/3X. Likewise DE being the 5-side makes it 5/5X, then BD is 3/5X and BE is 4/5X.

  • @mikloscsuvar6097
    @mikloscsuvar6097 20 днів тому

    Until now this was the delight of my day.

  • @miguelgnievesl6882
    @miguelgnievesl6882 Місяць тому +2

    If the triangles are in a 3-4-5 relationship then instead of assuming "x" is the side of the square, we make it equal to "5x". That is, DE=EF=FG=GD=5x. If we take triangle BDE we have that DE=5x; BE=4x and BD=3x. As BC=148 then EC=148-4x. Now, the angle at c is α so sinα=111/185=EF/EC=5x/(148-4x). We solve and we get x=12. Consequently, the side of the square is equal to 60 and its area is 3600.

  • @jamestalbott4499
    @jamestalbott4499 Місяць тому

    Thank you! The use of proportions, knowing the larger triangle's side length. That was spectacular! That definitely goes into the toolbox!

  • @sergioaiex3966
    @sergioaiex3966 Місяць тому +2

    Solution:
    ∆ ABC Area = ½ b . h
    8,214 = ½ b . 111
    b = 16,428/111
    b = 148
    Lets applying Pythagorean Theorem to calculate AC
    (148)² + 111² = AC²
    AC² = 21,904 + 12,321
    AC² = 34,225
    AC = √34,225
    AC = 185
    ∆ ABC is similar to ∆ DBE, and, like that, we have proportions
    111/185 = DB/a
    DB = 111a/185 (÷37)
    DB = 3a/5
    ∆ ABC is similar to ∆ ADG, and, like that, we have proportions
    a/(111 - 3a/5) = 148/185
    185a = 148 (111 - 3a/5)
    185a = 16,428 - 444a/5 (×5)
    925a = 82,140 - 444a
    1,369a = 82,140
    a = 60
    Yellow Square Area (YSA) = a²
    YSA = a²
    YSA = 60²
    YSA = 3,600 Square Units ✅

  • @cyruschang1904
    @cyruschang1904 Місяць тому

    8214 x 2/111 = 148
    √(111^2 + 148^2) = √(12321 + 21904) = √34225 = 185
    The big triangle and the three white triangles are similar. If a is the hypotenuse length of the upper left triangle and b is the side of the square
    b/a = 148/185
    (111 - a)/b = 111/185
    111/b - 185/148 = 111/185
    b = 111/(185/148 + 111/185) = 111(148)(185)/(185^2 + 111(148)) = 60
    Square area = 3600

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho Місяць тому

    Yellow Square Area equal 3.600 Square Units.
    A = (0 ; 0)
    B = (66,6 ; 88,8)
    C = (185 ; 0)
    D = (45 ; 60)
    E = (105 ; 60)
    F = (45 ; 0)
    G = (105 ; 0)
    105 - 45 = 60

  • @marioalb9726
    @marioalb9726 Місяць тому +1

    A = 8214 cm² = ½.b.h
    b = 2A/h = 2*8214/111 = 148 cm
    tanα = 111/148 = 3/4
    x/cosα + x.sinα = 111
    x/(4/5) + x.(3/5) = 111
    5/4 x + 3/5 x = 111
    x = 111 / (5/4 + 3/5) = 60cm
    x² = 3600 cm² ( Solved √ )

  • @himo3485
    @himo3485 Місяць тому

    111*BC/2=8214 BC=148 37*3=111 37*4 =148 AC=37*5=185
    111 : 148 : 185 = 3 : 4 : 5
    DB=3x BE=4x DE=EF=FG=GD=5x AD=5x*5/4=25x/4
    3x+25x/4=111 37x/4=111 37x=444 x=12 5x=60
    Yellow Square area = 60*60 = 3600

  • @imetroangola17
    @imetroangola17 Місяць тому +1

    *Outra alternativa:*
    No ∆AGD:
    cos α = x/AD → AD = x/cos α
    No ∆DBE:
    sen α = DB/ x → DB = x sen α
    Daí,
    AD + DB = AB
    x/cos α + x sen α = 111
    _x(1/cos α + sen α) = 111_
    No ∆ ABC:
    sen α =111/185=3/5 e cos α=4/5
    x(5/4 + 3/5 ) = 111
    x(25 +12)/20 = 111
    x = 111 × 20/37 = 3 × 20 → x = 60.
    Logo, a área é *3600 unidades quadradas.*

    • @easyart1882
      @easyart1882 Місяць тому

      Small error x = 60, and area is 3600 sq unit

    • @imetroangola17
      @imetroangola17 Місяць тому

      @easyart1882 verdade! Corrigido! Obrigado

  • @wasimahmad-t6c
    @wasimahmad-t6c Місяць тому

    55.5×55.5=3080.25 big squaare area

  • @santiagoarosam430
    @santiagoarosam430 Місяць тому

    BC=2*8214/111=148---> 111=37*3 ; 148=37*4---> Si "a" es el lado del cuadrado: AB={5a/4}+(3a/5)=37a/20 ---> a=111*20/37=60---> Área del cuadrado amarillo =60²=3600.
    Gracias y saludos

  • @wackojacko3962
    @wackojacko3962 Місяць тому

    I wouldn't wanna die at sea for impiety and so I stick with Pythagoras' logic when it comes too almost- isosceles triangles too avoid the wrath of Poseiden...unlike numerology where meaning in numbers like 111 333 666 999 is analogous too meaning of reading tea leaves clouds in my coffee guts of sacrificial animals or you know, any error in perception that random numbers have any meaning. In this problem that 111 stands out like a sore thumb and makes me spin counter clockwise craving angelic approval. 🙂 ...BTW, @ 8:33 determining x was completely awesome! 🙂

  • @quigonkenny
    @quigonkenny Місяць тому

    Triangle ∆ABC:
    A = bh/2 = BC(AB)/2
    8214 = BC(111)/2
    111BC = 8214(2) = 16428
    BC = 16428/111 = 148
    As AB = 111 = 37(3) and BC = 148 = 37(4), then ∆ABC is a 3-4-5 Pythagorean triple right triangle with a scale of 37:1 and CA = 37(5) = 185.
    As ∠DGA = ∠ABC = 90° and ∠A is common, then ∆DGA is similar to ∆ABC. As ∠CFE = ∠ABC = 90° and ∠C is common, then ∆CFE is similar to ∆ABC. Thus all three aforementioned triangles are similar. Let s be the side length of square DEFG.
    GA/DG = AB/BC
    GA/s = 111/148 = 3/4
    GA = 3s/4
    CF/FE = BC/AB
    CF/s = 148/111 = 4/3
    CF = 4s/3
    CA = CF + FG + GA
    185 = 4s/3 + s + 3s/4
    185 = (16+12+9)s/12 = 37s/12
    s = 185(12/37) = 5(12) = 60
    Yellow Square DEFG:
    [ A = s² = 60² = 3600 sq units ]

  • @k9slayer
    @k9slayer Місяць тому

    I thank you for showing, thanks once again

  • @himadrikhanra7463
    @himadrikhanra7463 Місяць тому

    4107 square unit ?

  • @marcgriselhubert3915
    @marcgriselhubert3915 Місяць тому

    BE = (2.area of ABC)/AB = (2.8214)/111 = 148. Now AC^2 = AB^2 + BC^2 = 111^2 + 148^2 = 34225 = 185^2, so AC = 185. Now let's name t = angleBCA.
    We have sin(t) = AB/AC = 111/185 = 3/5, cos(t) = BC/AC = 148/185 = 4/5 and then tan(t) = 3/4.
    AngleDEB = t, so in triangle DBE we have DB/DE = sin(t) = 3/5, so DB = (3/5).DE = (3/5).c if we name c the side length of the square DEFG.
    AngleADG = t, so in triangle AGD we have DG/AD = cos(t) = 4/5, so AD = (5/4).DG = (5/4).c
    Now AB = 111 = DB + AD = (3/5).c + (5/4).c = (37/20).c. So we have c= 111/(37/20) = 60 and finallt the area of the square DEFG is 60^2 = 3600.

  • @wasimahmad-t6c
    @wasimahmad-t6c Місяць тому

    4108

  • @nenetstree914
    @nenetstree914 Місяць тому

    3600

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq Місяць тому

    Sir my focus is the hypotenuse(AC) of triangle ABC!
    AC =AG + GF(x) +FC --(1)[ x be the side of square ]
    2) In 🔺 ABC
    AB =111 units & area is 8214 sq units
    Hence
    BC = 8214/(2*111)
    = 148 units
    AB ঃ BC = 111ঃ 148=3 ঃ 4 (dividing by 37)
    According to Pythagorean Triplets AC = 37*5=185 units
    3)
    Now 🔺 ADG & 🔺 EFC are
    similar to the big 🔺 ABC
    4)So the ratio of their short leg to long leg will be 3ঃ 4 like the ratio of short leg and long leg of 🔺 ABC.
    5) Hence in 🔺 ADG
    = AG ঃ DG =3ঃ 4
    AG =3DG/4 = 3x /4(x be the side of the square) -- (2)
    6 ) in 🔺 EFC in the same way EF ঃFC =3ঃ4
    FC =4EF/3=4x/3--(3)(EF =x =side of the square)
    7)from (1), (2).(3) we get
    3x /4 + x +4x /3 =185
    >37x /12 = 185
    >x =60
    Side of square =60 units
    Area of square = 60^2
    =3600 sq units

  • @unknownidentity2846
    @unknownidentity2846 Місяць тому

    Let's find the area:
    .
    ..
    ...
    ....
    .....
    From the given area and the given side length of the right triangle ABC we can conclude:
    A(ABC) = (1/2)*AB*BC ⇒ BC = 2*A(ABC)/AB = 2*8214/111 = 148
    Now let's assume that B is the center of the coordinate system and that BC is located on the x-axis. Then the line AC is represented by the following function:
    y = (yA − yC)*(x − xC)/(xA − xC) + yC = (111 − 0)*(x − 148)/(0 − 148) + 0 = −3*(x − 148)/4
    The line AC is parallel to DE and perpendicular to EF. Therefore the lines DE and EF are represented by the following functions:
    DE: y = −3*(x − xE)/4
    EF: y = 4*(x − xE)/3
    AC and EF intersect at F. So we obtain:
    −3*(xF − 148)/4 = 4*(xF − xE)/3
    −9*(xF − 148) = 16*(xF − xE)
    −9*xF + 1332 = 16*xF − 16*xE
    16*xE + 1332 = 25*xF
    ⇒ xF = (16*xE + 1332)/25
    ⇒ yF = −3*(xF − 148)/4 = −3*[(16*xE + 1332)/25 − 148]/4 = −3*(16*xE + 1332 − 3700)/100 = (−48*xE + 7104)/100 = (−12*xE + 1776)/25
    (⇒ yF = 4*(xF − xE)/3 = 4*[(16*xE + 1332)/25 − xE]/3 = 4*(16*xE + 1332 − 25*xE)/75 = (−36*xE + 5328)/75 = (−12*xE + 1776)/25 ✓)
    The lengths of DE and EF can be calculated as follows:
    DE²
    = (xE − xD)² + (yE − yD)²
    = (xE − xD)² + [(−3/4)*(xE − xD)]²
    = (xE − xD)² + (9/16)*(xE − xD)²
    = (25/16)*(xE − xD)²
    ⇒ DE = (5/4)*(xE − xD) = (5/4)*(xE − 0) = (5/4)*xE
    EF²
    = (xF − xE)² + (yF − yE)²
    = (xF − xE)² + [(4/3)*(xF − xE)]²
    = (xF − xE)² + (16/9)*(xF − xE)²
    = (25/9)*(xF − xE)²
    ⇒ EF = (5/3)*(xF − xE) = (5/3)*[(16*xE + 1332)/25 − xE] = (5/3)*(16*xE + 1332 − 25*xE)/25 = (5/3)*(−9*xE + 1332)/25 = (−3*xE + 444)/5
    Since DEFG is a square, we have DE=EF. So we can conclude:
    (5/4)*xE = (−3*xE + 444)/5
    25*xE = 4*(−3*xE + 444)
    25*xE = −12*xE + 1776
    37*xE = 1776
    ⇒ xE = 1776/37 = 48
    ⇒ DE = (5/4)*xE = (5/4)*48 = 60
    ∧ EF = (−3*xE + 444)/5 = (−3*48 + 444)/5 = (−144 + 444)/5 = 300/5 = 60 ✓
    Now we are able to calculate the area of the yellow square:
    A(DEFG) = DE² = EF² = 60² = 3600
    Best regards from Germany