Can you find the Perimeter of the Triangle ABC? | (Proportionality) |

Поділитися
Вставка
  • Опубліковано 16 гру 2024

КОМЕНТАРІ • 37

  • @jamestalbott4499
    @jamestalbott4499 10 годин тому +1

    Thank you!

    • @PreMath
      @PreMath  8 годин тому

      You are very welcome! ❤️
      Thanks for the feedback ❤️

  • @jimlocke9320
    @jimlocke9320 11 годин тому +1

    The length of either MN or BC may be omitted and the problem can still be solved. If BC is omitted, we note that ΔAMN and ΔABC are similar. Therefore, AM/AB = MN/BC and, computing AM, AB and MN from x = 1, we can compute BC. Note, also, that PreMath really should check that the computed value of x satisfies AM/AB = MN/BC. It does, but if it did not, the problem would not be valid.
    Another way to solve the problem is to solve AM/AB = MN/BC. We get (8x - 7)/(13x - 10) = (2x - 1)/(2x + 1). There are 2 positive solutions, x = 1 and x = 1.7. However, there are other equations which must be satisfied. Let's take PreMath's equation: AM/MB = AN/NC. We find that x = 1 satisfies this equation but x = 1.7 does not. So, x = 1.7 is invalid and x = 1 is used to compute the perimeter.
    If either MN or BC were omitted, we would still get one solution to the problem. If AM, MB, AN, or NC were omitted (any one of the 4 lengths), there would be two valid solutions.

  • @unknownidentity2846
    @unknownidentity2846 14 годин тому +4

    Let's find the perimeter:
    .
    ..
    ...
    ....
    .....
    The triangles ABC and AMN are obviously similar, so we can conclude:
    BC/MN = AB/AM = AC/AN
    BC/MN = (AM + BM)/AM = (AN + CN)/AN
    BC/MN = (AN + CN)/AN
    (2x + 1)/(2x − 1) = [(4x − 3) + (3x − 1)]/(4x − 3)
    (2x + 1)/(2x − 1) = (7x − 4)/(4x − 3)
    (2x + 1)*(4x − 3) = (7x − 4)*(2x − 1)
    8x² − 6x + 4x − 3 = 14x² − 7x − 8x + 4
    0 = 6x² − 13x + 7
    0 = 6x² − 6x − 7x + 7
    0 = 6x*(x − 1) − 7*(x − 1)
    0 = (6x − 7)*(x − 1)
    First solution:
    6x − 7 = 0 ⇒ x = 7/6
    MN = 2x − 1 = 2*(7/6) − 1 = 7/3 − 1 = 7/3 − 3/3 = 4/3
    BC = 2x + 1 = 2*(7/6) + 1 = 7/3 + 1 = 7/3 + 3/3 = 10/3
    BC/MN = (10/3)/(4/3) = 5/2
    AN = 4x − 3 = 4*(7/6) − 3 = 14/3 − 3 = 14/3 − 9/3 = 5/3
    AC = 7x − 4 = 7*(7/6) − 4 = 49/6 − 4 = 49/6 − 24/6 = 25/6
    AC/AN = (25/6)/(5/3) = 5/2 ✅
    AM = 8x − 7 = 8*(7/6) − 7 = 28/3 − 7 = 28/3 − 21/3 = 7/3
    AB = 13x − 10 = 13*(7/6) − 10 = 91/6 − 10 = 91/6 − 60/6 = 31/6
    AB/AM = (31/6)/(7/3) = 31/14 ⚠
    This is not a valid solution.
    Second solution:
    x − 1 = 0 ⇒ x = 1
    MN = 2x − 1 = 2*1 − 1 = 2 − 1 = 1
    BC = 2x + 1 = 2*1 + 1 = 2 + 1 = 3
    BC/MN = 3
    AN = 4x − 3 = 4*1 − 3 = 4 − 3 = 1
    AC = 7x − 4 = 7*1 − 4 = 7 − 4 = 3
    AC/AN = 3 ✅
    AM = 8x − 7 = 8*1 − 7 = 8 − 7 = 1
    AB = 13x − 10 = 13*1 − 10 = 13 − 10 = 3
    AB/AM = 3 ✅
    This is a valid solution. Therefore the perimeter of the triangle ABC turns out to be:
    P = AB + AC + BC = 3 + 3 + 3 = 9
    Best regards from Germany

  • @aljawad
    @aljawad 14 годин тому +3

    Solved it by similarity of the triangles.

  • @wackojacko3962
    @wackojacko3962 12 годин тому +1

    @ 1:17 one way to prove the ratio is to look at the ratio of congruent triangles ADE and BDE. DE . Line segment DE Is common too both triangles (Bases) and because parallel lines are equidistant everywhere both triangles have the same height and so they have equal area. Similarly the area ratio of triangles CED and CEA have same Base (CE) and same Height. Is also true for triangles DEC and DEB .. same Base (DE) and same Height. ... How much fun can a person have in one day? I don't know, I'm goin back to bed. 😊

  • @MrPaulc222
    @MrPaulc222 14 годин тому +1

    (8x-7)(3x-1) = (5x-3)(4x-3)
    24x^2 - 29x + 7 = 20x^2 - 27x + 9
    4x^2 - 2x - 2 = 0
    2x^2 - x - 1 = 0
    (1+or-sqrt(1 - 4*2*-1))/4 = x
    (1+sqrt(9))/4
    or
    (1-sqrt(9))/4
    x = -2 gives side lengths

  • @Birol731
    @Birol731 12 годин тому +1

    My way of solution ▶
    [MN] // [BC]
    ∠AMN= ∠ABC
    ∠MAN= ∠BAC
    ∠ANM= ∠ACB

    ΔAMN ~ ΔABC
    Both triangles are similar !
    If we write the proportion of the side lengths to each other :
    [AM]/[AB]= [MN]/[MC]= [AN]/[AC]

    (8x-7)/(13x-10)= (2x-1)/(2x+1)= (4x-3)/(7x-4)
    By taking the first two equations above, we can write:
    (8x-7)*(2x+1)= (13x-10)*(2x-1)
    16x²+8x-14x-7= 26x²-13x-20x+10
    10x²-27x+17=0
    Δ= 27²-4*10*17
    Δ= 49
    √Δ= 7
    x₁= (27-7)/2*10
    x₁= 20/20
    x₁= 1
    x₂= (27+7)/20
    x₂= 34/20
    x₂= 17/10
    for x₁= 1
    [AM]= 1
    [AB]= 3
    [MN]= 1
    [BC]= 3
    [AN]= 1
    [AC]= 3

    1/3= 1/3= 1/3 ✅
    x₂= 17/10
    [AM]= 33/5
    [AB]= 121/10
    [MN]= 12/5
    [BC]= 22/5
    [AN]= 19/5
    [AC]= 79/10

    (33/5)/(121/10)= 66/121= 6/11
    (12/5)/(22/5)= 6/11
    (19/5)/(79/10)= 38/79

    6/11 = 6/11 ≠ 38/79 ❌

    x= 1
    P(ΔABC)= [AB] + [BC] + [CA]
    [AB]= 3
    [BC]= 3
    [CA]= 3

    P(ΔABC)= 3+3+3
    P(ΔABC)= 9 length units

  • @prossvay8744
    @prossvay8744 15 годин тому +2

    ABC perimeter=3+3+3=9 units.❤

  • @Heathenheart1979
    @Heathenheart1979 14 годин тому +2

    Even faster method: AM = AN so: 8X - 7 = 4X - 3, therefore X = 1. Now that you know the value of X, you can have the whole perimeter just by substitution.

  • @easyart1882
    @easyart1882 9 годин тому +1

    It's was easy

  • @ChuzzleFriends
    @ChuzzleFriends 9 годин тому

    ∠A ≅ ∠A by the Reflexive Property of Congruence.
    ∠AMN ≅ ∠B by the Corresponding Angles Theorem.
    So, △ABC ~ △AMN by AA. Use the Triangle Proportionality Theorem.
    AM/BM = AN/CN
    (8x - 7)/(5x - 3) = (4x - 3)/(3x - 1)
    (8x - 7)(3x - 1) = (5x - 3)(4x - 3)
    24x² - 8x - 21x + 7 = 20x² - 15x - 12x + 9
    24x² - 29x + 7 = 20x² - 27x + 9
    4x² - 2x - 2 = 0
    2x² - x - 1 = 0 (ac = -2, [-2, 1])
    2x² - 2x + x - 1 = 0
    2x(x - 1) + (x - 1) = 0
    (2x + 1)(x - 1) = 0
    2x + 1 = 0 or x - 1 = 0
    2x = -1 x = 1
    x = -1/2
    But when x = -1/2, the side lengths are either negative or zero. So, x = 1. Substitute this value in the equations. We can use the Segment Addition Postulate to solve quicker.
    AB = AM + BM = (8x - 7) + (5x - 3) = 13x - 10
    AC = AN + CN = (4x - 3) + (3x - 1) = 7x - 4
    AB = 13x - 10 = 13(1) - 10 = 13 - 10 = 3
    AC = 7x - 4 = 7(1) - 4 = 7 - 4 = 3
    BC = 2x + 1 = 2(1) + 1 = 2 + 1 = 3
    P = AB + AC + BC
    = 3 + 3 + 3
    = 9
    So, the perimeter of the large triangle is 9 units.
    (By the way, solving proves that the triangles are equilateral. This doesn't help much in solving, but I thought I'd point it out.)

  • @alexundre8745
    @alexundre8745 14 годин тому

    Bom dia Mestre
    Grato pela aula

  • @adgf1x
    @adgf1x 15 годин тому +1

    perimeter=1+1+2+2+3=9 unit.

  • @bobbyheffley4955
    @bobbyheffley4955 6 годин тому

    Calculating side lengths reveals that the triangles are equilateral.

  • @asvquickcalculations6712
    @asvquickcalculations6712 10 годин тому

    (8x-7)(3x-1)=(4x-3)(5x-3)
    24x^2-29x+7=20x^2-27x+9.
    4x^2-2x-2=0 2x^2-x-1=0
    x=2

  • @adgf1x
    @adgf1x 15 годин тому

    (8x-7)/5x-3=(4x-3)/(3x-1)=>24x^2-29x+7=20x^2-27x+9=0=>4x^2-2x-2=0=>2x^2-x-1=0=>2x^2-2x+x-1=0=>(x-1)(2x+1)=0=>x=1.perimeter=9 unit.ans

  • @asvquickcalculations6712
    @asvquickcalculations6712 10 годин тому

    P=22x-13=44-13=31

  • @michaelkouzmin281
    @michaelkouzmin281 13 годин тому

    This task brings us to face one more question which at least I cannot answer:
    1. Triangles ABC and AMN are similar, so (at least it should be) BC/MN = AB/AM = AC/AN;
    2. some preliminary estimations: AB= 8*x-7+5x-3 = 13x-10; AC=4x-3+3x-1=7x-4;
    3. Let us solve for x equations listed in p2:
    (2x+1)/(2x-1)=(13x-10)/(8x-7)
    we get 2 real positive roots:
    x1=1; x2 = 1.7 - both are reasonable - I see no reason to exclude one (((
    (2x+1)/(2x-1)=(7x-4)/(4x-3)
    we get 2 real positive roots:
    x3=1; x4 = 7/6 - both are reasonable - I see no reason to exclude one (((
    3rd attempt
    (13*x-10)/(8*x-7)=(7*x-4)/(4*x-3)
    we get 1 real positive root:
    x5=1; x6 = -1/2 - Now I know how to exclude x6 )))))
    x1=x3=x5=1 is ok but how should we treat x2 and x4 ????

    • @Abby-hi4sf
      @Abby-hi4sf 12 годин тому +1

      ; x4 = 7/6 when you substitute it back to check proportionalty, it fails
      x = 7/6
      MN = 2x − 1 = 2*(7/6) − 1 = 7/3 − 1 = 7/3 − 3/3 = 4/3
      BC = 2x + 1 = 2*(7/6) + 1 = 7/3 + 1 = 7/3 + 3/3 = 10/3
      BC/MN = (10/3)/(4/3) = 5/2
      AN = 4x − 3 = 4*(7/6) − 3 = 14/3 − 3 = 14/3 − 9/3 = 5/3
      AC = 7x − 4 = 7*(7/6) − 4 = 49/6 − 4 = 49/6 − 24/6 = 25/6
      AC/AN = (25/6)/(5/3) = 5/2
      AM = 8x − 7 = 8*(7/6) − 7 = 28/3 − 7 = 28/3 − 21/3 = 7/3
      AB = 13x − 10 = 13*(7/6) − 10 = 91/6 − 10 = 91/6 − 60/6 = 31/6
      AB/AM = (31/6)/(7/3) = 31/14

    • @michaelkouzmin281
      @michaelkouzmin281 12 годин тому +1

      @@Abby-hi4sf Thanx!

  • @vaggelissmyrniotis2194
    @vaggelissmyrniotis2194 14 годин тому +2

    Shouldn't x=7/6 be a solution too?

    • @vaggelissmyrniotis2194
      @vaggelissmyrniotis2194 13 годин тому

      Ok from what i checked x=7/6 is not a solution of the AM/AB=MN/BC therefore x=1 is the only solution.Same thing happens with x=1,7 which is not valid too.

  • @MFarhanAkterArnab
    @MFarhanAkterArnab 9 годин тому

    It could be also proved that the triangle is equilateral

  • @Mathematicalexpression
    @Mathematicalexpression 12 годин тому +1

    Класс

  • @Herlequine
    @Herlequine 5 годин тому

    First time I've been interested math in a while. Some of the steps don't make full sense to me anymore after a decade out of school, but I could at least follow along.

  • @adgf1x
    @adgf1x 15 годин тому

    by Thales theorem.

  • @Kerbeygrip
    @Kerbeygrip 8 годин тому

    I used another method in half the time! Right answer. 9

  • @marcgriselhubert3915
    @marcgriselhubert3915 15 годин тому

    Too easy!

  • @misterenter-iz7rz
    @misterenter-iz7rz 13 годин тому +3

    Very noninteresting 😂😅😢

  • @AlekseyAbrosov
    @AlekseyAbrosov 8 годин тому

    Я вот не понял, в чем сложность? Мой ребенок 9 лет тоже не оценил сложности

  • @nenetstree914
    @nenetstree914 15 годин тому

    X can't be 1.7 ???????

    • @unknownidentity2846
      @unknownidentity2846 13 годин тому +2

      No. The triangles ABC and AMN are obviously similar, so we have:
      BC/MN = AB/AM = AC/AN
      If only the equation BC/MN = AB/AM is considered, two solutions are obtained:
      x = 1 and x = 1.7
      For x=1 the ratio AC/AN is equal to the ratios BC/MN and AB/AM, therefore x=1 is a valid (and the only valid) solution. For x=1.7 the ratio AC/AN is not equal to the ratios BC/MN and AB/AM anymore, therefore x=1.7 is not a valid solution.
      Best regards from Germany

  • @Abdelfattah-hr8tt
    @Abdelfattah-hr8tt 13 годин тому

    Thanks I love your videos