Russian Math Olympiad | A Very Nice Geometry Problem | 2 Different Methods

Поділитися
Вставка
  • Опубліковано 24 лис 2024

КОМЕНТАРІ • 21

  • @timc5768
    @timc5768 7 місяців тому +5

    I appreciate your methods : I probably wouldn't have found either. Still, I think you could also say:
    sin(t) = (b/2)/5 = b/10, (t = theta), Eq. 1
    sin(2t) = b/6 Eq.2
    [sin(2t)]/sin(t) = [2sin(t)cos(t)]/sin(t) = 2cos(t) =[ b/6]/[b/10] = 5/3, so cos(t) = 5/6,
    then a = 5(5/6) = 25/6, and
    (b/2)^2 = 5^2 - (25/6)^2 =(900 - 625)/36, = 275/36 , so b/2 = [5{sqrt(11)}]/6,
    Area = ab = (25/6)[5{sqrt(11)}/3] = [125 sqrt(11)]/18

  • @varathan3558
    @varathan3558 7 місяців тому +2

    I think that the problem will be solved much faster if you drag the parallel of BC from E. Then using the same equations you' ll come up to ab=125(sqrt(11))/18!

  • @soli9mana-soli4953
    @soli9mana-soli4953 7 місяців тому +1

    Even if in my opinion the trigonometric solution (BC = 6*sin 2theta, BC/2 = 5*sin theta) is better, here it is a non trig. solution:
    If from point F we trace the perpendicular FG to line DE we get two congruent right triangles: DFC and DFG for ASA criterion. Then :
    FC = FG = X
    DG = DC
    If we draw a circle with center in F and radius = FC, this circle will be tangent to line DE in point G and for the two tangent theorem GE = BE = Y
    Now DG + GE = DE
    DG + Y = 6 => DG = DC = 6 - Y
    So we are able to write two pythagorean identities:
    On DFC:
    5² = X² + (6 - Y)² => X² = 12Y - Y² - 11
    On DEH (EH being the perpendicular to line DC)
    6² = (2X)² + (6 - Y - Y)² => 4X² +4Y² - 24Y = 0
    substituting the first equation in the second
    48Y - 4Y² - 44 + 4Y² - 24Y = 0
    Y = 11/6
    DC = 6 - 11/6 = 25/6
    X = (5/6)√ 11
    BC = 2*5/6√ 11 = 5/3√ 11
    Area rectangle = 25/6 * (5/3)√ 11 = (125/18)√ 11

  • @constantinfedorov2307
    @constantinfedorov2307 6 місяців тому +1

    Если продлить EF до пересечения с продолжением DC (пусть это точка P) то треугольник EDP равнобедренный - в нем DF биссектриса и медиана одновременно (очевидно, что EF = FP). То есть DF перпендикулярно EF, треугольники DEF и DFC подобны, откуда сразу находится DC, а затем FC, что полностью решает задачу. Что-то из этого есть в ролике, но там проще.

  • @anantkulkarni4344
    @anantkulkarni4344 2 місяці тому

    Good morning l think ,can be like this also
    Sin*=b/10 where. * is theta
    Cos*=a/5
    Sin2*=b/6
    2Sin*Cos*=b/6
    2b/10×a/5=b/6
    a/25=1/6
    a=25/6
    By Pythagoras theorem
    b^2/4+625/36=25
    b^2/4=25-625/36
    b^2/4=(900-625)/36
    then we get and at the last area=about is it

  • @VojislavZivkovic-vg3un
    @VojislavZivkovic-vg3un 5 місяців тому

    Try simpler: sin∆=x/5 and sin(2∆)=2x/6=x/3
    sin(2∆)=2sin∆cos∆
    Therefore: 2(x/5)cos∆=x/3
    x and x cancel out, so cos∆=5/6 and ∆=33.9°
    Knowing that you may find directly 2x and a.

  • @entp329
    @entp329 5 місяців тому

    3rd method
    FC = 5Sin@ (@=theta)
    therefore
    BC = 10sin@
    by the way
    BC also = 6sin2@
    so equation 10sin@ = 6sin2@
    and sin2@ = 2sin@cos@
    so 10sin@ = 12sin@cos@
    there fore cos@ = 5/6 sin@ = root11/6
    answer = 5cos@ x 10sin@ = 250 root11 / 36

  • @Irtsak
    @Irtsak 7 місяців тому

    Extend EF and let P the intersection point of EF and DC.
    Obviously orthogonal triangles BEF, FCP are equals => EF=FP
    In triangle DEP : DF is median and angle bisector at the same time =>
    DEP is isosceles => DF is height , so EF²=ED²-DF²=36-25=> EF²=11
    Let CF=x=BF , CP=y so DC =6-y
    x²+y²=FP² => x²+y²=11 (1)
    In orthogonal triangle DFP , FC is heigh => FC²=DC*CP => x²=(6-y)y =>
    x²+y²=6y => 6y=11 , cause (1) . So y=11/6
    I can easily estimate x from (1) => x=(5√11)/6
    So area of ABCD = DC*BC=(6-y)2x= …….. =(125√11)/18

  • @quigonkenny
    @quigonkenny 7 місяців тому +1

    Let AB = x and DA = y. From the diagram we can see the following:
    sin(θ) = (y/2)/5 = y/10
    cos(θ) = x/5
    sin(2θ) = y/6
    But we can also derive sin(2θ) from sin(θ) and cos(θ).
    sin(2θ) = 2sin(θ)cos(θ)
    y/6 = 2(y/10)(x/5)
    y/6 = 2xy/50 = xy/25
    y(1/6) = y(x/25)
    x/25 = 1/6
    x = 25/6
    And we can determine y from the formula relating cos²(θ) and sin²(θ):
    cos²(θ) + sin²(θ) = 1
    (x/5)² + (y/10)² = 1
    y²/100 = 1 - (5/6)² = 1 - 25/36
    y² = (11/36)100 = 275/9
    y = √(275/9) = 5√11/3
    A = xy = (25/6)(5√11/3)
    A = 125√11/18 ≈ 23.032

  • @himadrikhanra7463
    @himadrikhanra7463 7 місяців тому +1

    Square....right angel triangle form by drawing lines...there after triplets...then sin area formula

  • @karimhamdi8348
    @karimhamdi8348 3 місяці тому

    La clef de tous ce chemin ... est la résolution du système de deux équations avec deux inconnus...b et téta
    Sin(2 téta) = b/6
    Sin(téta)=b/10

  • @Mediterranean81
    @Mediterranean81 7 місяців тому +1

    Good explanation sir

  • @francescoraucea6409
    @francescoraucea6409 7 місяців тому

    IlIndicando con t l'angolo theta, il metodo più semplice consiste nel calcolare t con l'equazione 6* sin(2t)=2*5*sin (t); svolgendo con le formule di duplicazione emerge per t il valore di 30° per cui b vale 5 ed a= 5*cos (t) = 25/6; poiché 5*25/6 è diverso dal valore calcolato dall'espositore ci deve essere qualche errore di calcolo.

    • @timc5768
      @timc5768 7 місяців тому

      cos(t) = 5/6 , a = 25/6
      sin(t) = {sqrt(11)}/6, b = 2*5* {sqrt(11)}/6.
      I don't know where the 'valore di 30 [degrees]' is from, but I see that cos 30 =[sqrt(3)]/2 is close to 5/6;
      arccos(5/6) = 33.5573 degrees approx.(according to calculator)

  • @rabotaakk-nw9nm
    @rabotaakk-nw9nm 7 місяців тому +1

    (250/36)vʼ11=(125/18)/vʼ11 !!!

  • @dvdvideo1234
    @dvdvideo1234 7 місяців тому

    S = (5 * cos(th)) * (2 * 5 * sin(th))

  • @kinno1837
    @kinno1837 7 місяців тому

    Hi sir.I would like to ask if there is any way to send math problems to you?I hope our self-created questions can be published or discussed.

    • @MathBooster
      @MathBooster  7 місяців тому

      You can ask the question in the comment section. I will definitely solve the problem, if the problem have good thumbnail.

    • @kinno1837
      @kinno1837 7 місяців тому

      What if I have some geometry questions to ask?I think this is difficult to express through just typing.

  • @sergeyvinns931
    @sergeyvinns931 6 місяців тому

    24,095 degrees!

  • @rookady
    @rookady 7 місяців тому

    125*sqrt(11)/18