Sum of 1/n^4 (Fourier Series & Parseval's Theorem)

Поділитися
Вставка
  • Опубліковано 25 січ 2025

КОМЕНТАРІ • 295

  • @rowanmakesfilms
    @rowanmakesfilms 5 років тому +202

    If it's popular do it again

    • @blackpenredpen
      @blackpenredpen  5 років тому +9

      We will see!!

    • @incription
      @incription 5 років тому +5

      Perhaps 99 more times?

    • @alexdemoura9972
      @alexdemoura9972 5 років тому +1

      A bit of notation first:
      ,/' - integral symbol;
      [a~b] - a to b, included;
      inf - infinite;
      Let's accept the challenge for:
      Sum[n=1~inf] 1/n⁶
      Know:
      Sum[n=1~inf] 1/n² = pi²/6
      Sum[n=1~inf] 1/n⁴ = pi⁴/90
      as the result in this video
      Best trial is:
      f(x) = x³ since [f(x)]² = x⁶
      a[0] = 1/2pi ,/'[-pi~pi] x³ dx =
      = 1/2pi (x⁴/4)[-pi~pi] = 0
      a[n] = 1/pi ,/'[-pi~pi] x³ cos(nx) dx
      Use DI method:
      D: x³ to 6 to 0;
      I: cos(nx) to cos(nx)/n⁴
      Simplify using:
      sin(n.pi) = 0
      cos(n.pi) = (-1)ⁿ
      And we find:
      a[n] = 0

    • @alexdemoura9972
      @alexdemoura9972 5 років тому

      So b[n] is our hope.
      b[n] = 1/pi ,/'[-pi~pi] x³ sin(nx) dx
      Use DI method:
      D: x³ to 6 to 0;
      I: sin(nx) to sin(nx)/n⁴
      Simplify using:
      sin(n.pi) = 0
      cos(n.pi) = (-1)ⁿ
      And we find:
      b[n] = 12(-1)ⁿ/n³ - 2pi²(-1)ⁿ/n

    • @alexdemoura9972
      @alexdemoura9972 5 років тому +2

      Parseval, 1st (left) part:
      1/pi ,/'[-pi~pi] x⁶ dx =
      = 1/pi (x⁷/7)[-pi~pi] = 2pi⁶/7
      Parseval, 2nd (right) part, as a[0] = a[n] = 0 then:
      Sum[n=1~inf] b[n]² =
      Sum[n=1~inf] (12(-1)ⁿ/n³ - 2pi²(-1)ⁿ/n)²
      Simplify using:
      (-1)²ⁿ = 1
      And we find:
      Sum[n=1~inf] 144/n⁶ - 48pi²/n⁴ + 4pi⁴/n²
      Now replace the Sums by known values:
      1/n² per pi²/6
      and
      1/n⁴ per pi⁴/90
      And make Parseval 2 parts altogether:
      -24pi⁶/45 + 2pi⁶/3 + 144 Sum[n=1~inf] 1/n⁶ = 2pi⁶/7
      Solving the fractions we can find the result:
      Sum[n=1~inf] 1/n⁶ = pi⁶/945
      Is that correct?

  • @roddeguzman9958
    @roddeguzman9958 5 років тому +179

    This is the best gaming channel in youtube hands down.

  • @sciencifier3232
    @sciencifier3232 5 років тому +71

    Pikachu I choose you.....
    Pikachu 'thunder bolt attack'.....
    'The sum goes from 1 to infinity of 1/n⁴' gets a shock and died
    'The sum goes from 1 to infinity of 1/n⁴' is solved

  • @rileywells3045
    @rileywells3045 5 років тому +15

    I've seen this identity a lot but I've never seen such a nice, elegant proof for it. This video was great, keep it up!

  • @rajns8643
    @rajns8643 5 років тому +57

    0:09
    Pikachu used Stare:
    *Its super effective*

    • @blackpenredpen
      @blackpenredpen  5 років тому +1

      RAJAS SURLIKAR hahahaha thank you!!!

    • @rajns8643
      @rajns8643 5 років тому

      @@blackpenredpen
      ^_^

  • @alexdemoura9972
    @alexdemoura9972 5 років тому +24

    Let me get those people names for a second. To solve a series I need to use:
    - series by Fourier: ok, a historical French guy, good one by the way;
    - theorem by Parseval: another historical French guy, a bit more obscure, not a knight of Round Table, not Wagner's opera character;
    - integration method by Lu Chen the inverse of Chen Lu: both (fictional Chinese???) characters, I didn't find anything relevant on Math in Wikipedia with these names, in order to memorize some Calculus methods;
    - praying, may God quotient rule would not show up or probably another (fictional Chinese???) character called Quo Chen Lu should be memorized;
    - and now Pikachu, a Japanese manga character...
    Too much people for me, almost a Legion to defeat a series.

  • @e-money2141
    @e-money2141 5 років тому +29

    The only acceptable way to teach math.

  • @thomasjefferson6225
    @thomasjefferson6225 Рік тому

    This was a question on a real analysis exam I had. I really love how this is derived and used. I got that one right. Four years later this has helped me, thank you so much.

  • @XRyXRy
    @XRyXRy 5 років тому +189

    yeah, im pikachu:
    Pretty
    I good
    K at
    A calculus
    C
    H
    U

    • @blackpenredpen
      @blackpenredpen  5 років тому +10

      X Ry yay!!!!!

    • @shibeyyy
      @shibeyyy 5 років тому +1

      Yeah I'm Pikachu
      P why
      I i
      K hate
      A trigonometry
      C so
      H hek
      U Much

    • @Fokalopoka
      @Fokalopoka 5 років тому

      Lmao

  • @amritas2400
    @amritas2400 3 роки тому

    Tears of joy.
    I learned Parseval's theorem, Fourier series and odd/even functions -- all from this single video. Thank you for existing, you incredibly adorable Pikachu.

  • @ajitfhamacademy
    @ajitfhamacademy 5 років тому +2

    That's very nice . Continue uploading videos like this . It's awesome

  • @koropol8699
    @koropol8699 4 роки тому +2

    you saved me, I needed this proof to write my monography in maths... I'm completely thankful :')

  • @sensei9767
    @sensei9767 5 років тому +10

    bprp: *wears costume*
    audience: *surprised pikachu face*

  • @hayzzzeus
    @hayzzzeus 5 років тому +9

    Amazing video! Thanks for helping me prepare for my AP Calculus BC test dad

  • @ThisIsEduardo
    @ThisIsEduardo 5 років тому +7

    More videos like this please ! 😂😂😂 I LOVED the costume !!

  • @DjVortex-w
    @DjVortex-w 5 років тому +15

    But I thought Pikachu is a detective, not a maths professor.

    • @blackpenredpen
      @blackpenredpen  5 років тому

      WarpRulez hahahaha it can be anything!!

    • @aneeshsrinivas892
      @aneeshsrinivas892 5 років тому

      u should send the math professor pikachu idea to game freak

  • @ianvideos3149
    @ianvideos3149 5 років тому +4

    Idk why but u made me spill my water lmao
    BTW nice video as always!

  • @Supernova799
    @Supernova799 5 років тому +2

    😂😂😂 the first part. Great video. Saw u first time without spectacles

  • @Jaojao_puzzlesolver
    @Jaojao_puzzlesolver 3 роки тому +1

    0:15 That's the second most lovely Pikachu I've ever seen
    The No.1 is of course 0:08

  • @jayapandey2541
    @jayapandey2541 5 років тому +11

    How about a general formula for summation of I/(n^(2k)) as n goes from 1 to infinity. Now that would be a thunderbolt for Pikachu.

    • @nimmira
      @nimmira 5 років тому +4

      that needs Raichu

    • @budtastic1224
      @budtastic1224 5 років тому +3

      Or 1000 pichus

    • @blackpenredpen
      @blackpenredpen  5 років тому +1

      Hahahahahaha

    • @jayapandey2541
      @jayapandey2541 5 років тому +1

      @@blackpenredpen but seriously can we use Fourier series to find it out.

    • @RanEncounter
      @RanEncounter 5 років тому +1

      math.stackexchange.com/questions/1948206/sum-n-1-infty-frac1n6-frac-pi6945-by-fourier-series-of-x2

  • @benjaminbrady2385
    @benjaminbrady2385 5 років тому +1

    I have never seen the fourier series written like that...
    Shouldn't it be the sum from t = negative infinity to t = infinity of a_n * e^int
    Where the a_n coefficient is 1/2pi integral of f(x) e^-inx dx

  • @fackingcopyrights
    @fackingcopyrights 5 років тому +3

    A wild e^x appeared.
    Pikachu used differentiate:
    d/dx (e^x) = e^x.
    It was not very effective...

    • @aneeshsrinivas892
      @aneeshsrinivas892 5 років тому

      pikachu used ∂/∂y,
      ∂/∂y(e^x)=0
      it's super effective

  • @TheNachoesuncapo
    @TheNachoesuncapo 5 років тому +1

    This channel is just amazing.

  • @fabiaiz10
    @fabiaiz10 5 років тому

    OMG i've never seen before the method you use at 2:58 to integrate by part, it's awesome !

  • @henselstep
    @henselstep 5 років тому +6

    Were you just in Dusseldorf?
    There was Japan day, when you released this video. And you could see there many pikachus!

  • @VibingMath
    @VibingMath 5 років тому +2

    BPRP Pokemon's theorem: The number(n) of likes in this video is directly proportional of the number of Pikachu occurring in the future, where n is natural number and tends to positive infinity

    • @blackpenredpen
      @blackpenredpen  5 років тому +1

      Mak Vinci hahaha I hope so too

    • @VibingMath
      @VibingMath 5 років тому +1

      @@blackpenredpen Yeah sure you can Pika~ hahaha

  • @giancarlovadala2932
    @giancarlovadala2932 2 роки тому

    Thank you, very very interesting, and the Pikachu outfit is really cool, we want more!
    I had one doubt about this proof: why does it work at all, considering that x^2 is not a periodic signal (hypothesis of the Fourier series and of the version of Parseval’s theorem you used)? Plotting the reconstructed signal with a0 and a dozen of an, it becomes clear that the function used in the proof is not x^2 over R: it is the repetition along R of the function x^2 defined over the closed interval -pi, pi, which is of course periodic. Thanks!

  • @shashwat4920
    @shashwat4920 5 років тому +2

    I love this Pikachu fan who switches pen with a lightning

  • @saumytiwari7
    @saumytiwari7 5 років тому +20

    Wow...pikachu...😆😆
    btw u r looking cute..😊

  • @thebloxxer22
    @thebloxxer22 5 років тому +4

    3:08 TECHNICAL DIFFICULTIES, PLEASE STAND BY. Error code: HTTP-404: Full Blue Pen Not Found.

  • @isaacsantos6200
    @isaacsantos6200 5 років тому +1

    Just what I needed to start my morning.

  • @joryjones6808
    @joryjones6808 5 років тому +2

    Detective Redpen solves the case again.

  • @snehasishpaul4502
    @snehasishpaul4502 5 років тому +1

    I really like your videos, could please make a video on the concept of locus, i'm pretty much confused about the topic.

  • @stephanierobles4841
    @stephanierobles4841 2 роки тому

    THIS VIDEO WAS LIFE SAVERRRRR!!!! math methods made easy!

  • @leeterthanyou
    @leeterthanyou 5 років тому +1

    I wish so, so, so much that this man were my calc1 instructor.

  • @youurdream182
    @youurdream182 5 років тому +2

    Hahah 😂 Oi pikachu, wise choice of doing it with Parseval theorem and y=x^2, the version without the theorem yet with the use of y=x^4 was a nightmare of a chan lu xD

  • @AhmedHan
    @AhmedHan 5 років тому +1

    Is there a general formula for sum of 1/x^n, for all x element of positive integers?

    • @angelmendez-rivera351
      @angelmendez-rivera351 5 років тому +1

      AhmedHan Only when n is even. And, if you are in advanced mathematics and you are working with well-defined divergent summations, then there is also on for negative n. There is no formula for positive odd n, though, at least not yet.

  • @alessandrovillanuevacantil9618
    @alessandrovillanuevacantil9618 5 років тому +2

    Hey BPRP. This video got me so interested in if there is a way to calculate f(x) so the part of the sum (an)^2+(bn)^2 is a specific serie i wanna calculate?

    • @blackpenredpen
      @blackpenredpen  5 років тому +1

      Alessandro Villanueva Cantillo I will prove it today.

  • @drpeyam
    @drpeyam 5 років тому +4

    Blackpikachuredpikachu!!!! :3

  • @RodolfoTorres98
    @RodolfoTorres98 5 років тому +1

    Great video!
    But you forgot to say that the procedure is only true if we consider the function with period 2π, for any other period the coefficients would change a little

  • @rhversity5965
    @rhversity5965 5 років тому +9

    Can you prove Parseval’s theorem

    • @TheTimeDilater
      @TheTimeDilater 5 років тому +2

      It's simple just square the Fourier expansion and simplify then just integrate from -π to π

  • @kingbeauregard
    @kingbeauregard 5 років тому

    Between the math and the costume I feel like I'm having a fever dream.

  • @رامحديب
    @رامحديب 2 роки тому

    Fantastic ......
    But I have got quastion
    Do you think with solution or you found it when you searsh ?

  • @andriisoloviov7056
    @andriisoloviov7056 5 років тому +4

    Of course, a^2+b^2=(a+b)^2.
    Profit.

  • @gagandeepsingh7789
    @gagandeepsingh7789 5 років тому +3

    Pikachu used Fourier series....
    It was super effective!

  • @jamez6398
    @jamez6398 5 років тому +1

    Is it possible to find a formula to work out the sum from 1 to infinity of 1/n^(2m)?

    • @beatoriche7301
      @beatoriche7301 5 років тому

      You can find the value of the zeta function at any positive even power using Fourier series, but there is no simple pattern to it. You can still find a general formula, though. In fact, if you’ve ever heard of the Bernoulli numbers before, you may be surprised to hear that they arise in this context.

    • @strikerstone
      @strikerstone 10 місяців тому

      I was thinking the same

  • @aartibabiya8538
    @aartibabiya8538 4 роки тому

    Thankyou so so so much for helping out when I needed this explanation the most.... Just loved the way you explained it....😍🥳

  • @franc1159
    @franc1159 5 років тому +1

    And he continues to solve the world's problems...

  • @hiiissmin9451
    @hiiissmin9451 3 роки тому

    how can i deal with sigma 1/(2k-1)^4? k from 1 to infinity

  • @juttagut3695
    @juttagut3695 5 років тому +2

    Why the Pikachu costume???

  • @omaradil8640
    @omaradil8640 5 років тому

    If we want to approximate pi, we multiply both sides of the infinite sum by the denominator and take the nth root.so which sum is more accurate when approximating pi for the same number of terms
    The sum of n^6,n^4 or n^2?

  • @nitrozox212
    @nitrozox212 5 років тому +3

    What about Onix next? Or maybe Snorlax

  • @garagemoney9237
    @garagemoney9237 5 років тому +1

    Integral 1/(x^2-1)^2 dx please

  • @suman-majhi
    @suman-majhi 5 років тому +1

    integration of x^3/e^x-1..... Plz solve it

  • @mcnonsonewton5287
    @mcnonsonewton5287 3 роки тому

    hey BPRP . what is the function for the exercise ? still x² ???

  • @jacobharris5894
    @jacobharris5894 4 роки тому

    If you want to use this method to find what a sum converges to in general, how do you pick the function? Do I just chose the square root of denominator like you did here? For example, if I wanted to find the infinite series of 1/n^6, would I choose x^3 for my function?

  • @takeoverurmemes
    @takeoverurmemes 5 років тому +1

    how do i explain to my friends that a pikachu is teaching me calculus?

  • @shandyverdyo7688
    @shandyverdyo7688 5 років тому

    What if i want to choose n is a trigonometry function, will it work?

  • @themafia33
    @themafia33 3 роки тому

    how can i do with (-1)^k/2k+1 and f:x? thanks

  • @peterchan6082
    @peterchan6082 5 років тому +1

    OH MY . . . Fourier and Parseval . . . seriously?
    Have you EVER introduced them in your previous videos yet?

    • @blackpenredpen
      @blackpenredpen  5 років тому +1

      Peter Chan yes. You can see my description for links. I am almost done teaching my spring classes so I can do some other topics soon

    • @blackpenredpen
      @blackpenredpen  5 років тому +1

      Btw, I will prove the Parseval’s theorem soon

  • @amankashyap5767
    @amankashyap5767 5 років тому +8

    pika pika pikachu...it means i like your work.

  • @itachi2011100
    @itachi2011100 5 років тому

    When UA-cam pushes Pikachu content because of a movie but you have a math channel to run.

  • @dmddjack
    @dmddjack 5 років тому +2

    Which university do you teach at?

  • @NicolasSchmidMusic
    @NicolasSchmidMusic 4 роки тому

    how to know which function f(x) I should take for a given sum? (for exemple sum (1/(2k -1)^2) as k -> infinity)?

  • @rubenmendoza8829
    @rubenmendoza8829 5 років тому

    Osea que con este método se puede hallar la sumatoria de cualquier serie ?

  • @freshlemon101
    @freshlemon101 5 років тому

    the more i look at the thumbnail, the more that pikachu creeps me out

  • @БорисНазаров-х7к
    @БорисНазаров-х7к 5 років тому

    Coud you explain another proof of this formula which involves decomposition of sin(x) into infinite product?

    • @blackpenredpen
      @blackpenredpen  5 років тому

      Борис Назаров
      Max already did that for the sum of 1/n^2 two years ago. You can see that in my description

  • @roddeguzman9958
    @roddeguzman9958 5 років тому

    Can you please do a video on the cauchy condensation test for series?

  • @gothpixee3257
    @gothpixee3257 4 роки тому

    Does it matter if the problem specifies a different interval? Like in the video, integrals are from -pi to pi, but if the problem states x^2 is from 0 to pi, then should we integrate on that interval instead?

  • @josepazmino842
    @josepazmino842 5 років тому

    I wanted a suprised pikakuchu meme reference xD.
    Ps: nice video as always

  • @isabahk1132
    @isabahk1132 5 років тому +1

    *Dresses as Pikachu*
    Holds a Pokeball 😂
    love that vid keep it up

    • @blackpenredpen
      @blackpenredpen  5 років тому

      that "holds a pokeball" made me luahg!!! lolllll

  • @sagarpatel5683
    @sagarpatel5683 3 роки тому

    Awesome bro. Very well explained 👏

  • @guyvanburen
    @guyvanburen 4 роки тому +1

    I choose you, x^2!

  • @rajdeepdeb5369
    @rajdeepdeb5369 5 років тому

    I have a question!How can you use Fourier series for a non-periodic function??

  • @jarjish851
    @jarjish851 5 років тому +1

    I never thought that Pikachu was such a good maths teacher.
    Love your video as always

  • @EddieEntertainment
    @EddieEntertainment 5 років тому

    more fourier pls! Really enjoyed the video
    (also more pikachu pls)

  • @aneeshsrinivas9088
    @aneeshsrinivas9088 2 роки тому

    this makes me wonder. If you or Peyam got to play PMD, would either of you get Pikachu as the Pokemon you become?

  • @janv.8538
    @janv.8538 5 років тому +8

    Next: Zeta(pi)
    U will need pikachu again ;D

  • @gghelis
    @gghelis 5 років тому

    Okay, but how will Bulbasaur solve this?

  • @ritwiksingh4937
    @ritwiksingh4937 4 роки тому

    Can you prove it without using parseval's formula???

  • @einsteingonzalez4336
    @einsteingonzalez4336 5 років тому

    Mr. Cao, if f(x)=sqrt(x), what does this mean for the Riemann zeta function of 3? Does this mean that the Riemann zeta function of 3 cannot be written in closed form?

  • @sardorchallenges
    @sardorchallenges 5 років тому +1

    hey bro can you please integrate 4x/(1+x)(1+x^2)^2

  • @i_am_anxious02
    @i_am_anxious02 5 років тому +3

    My life is officially complete and everyone who watches this is immortal.

  • @deadfish3789
    @deadfish3789 5 років тому

    I've never seen Parseval's theorem before though. Is this something you prove on your course? I would also question how valid the proof is: given that Fourier series are 2pi-periodic, clearly the series can only converge on an interval of length 2pi. Is this sufficient to be able to use Parseval?

  • @itachi2011100
    @itachi2011100 5 років тому +1

    blackpenredpen: sin n pi
    Me: senpai!

  • @rajendramisir3530
    @rajendramisir3530 5 років тому

    This infinite series converges to an irrational numerical quantity. For even powers of the series, the sum contains pi raised to the same even power. Is this the case with odd powers of the series? I salute the French Mathematicians.

  • @DeepakSingh-fy3fb
    @DeepakSingh-fy3fb 5 років тому

    For a0 its 1/2pi or 1/pi

  • @apta9931
    @apta9931 5 років тому +2

    I know it seems like a bit of a niche topic‚ but is there a way that you could teach some mathematical vocabulary in Chinese (or point me towards somewhere where I can learn it xD). 我从去年十一月起学习中文, 但是我还不会谈论数学。Which is a shame because it's one of my favorite topics.
    Edit: Though, granted, not one I get to talk about often, not being in school anymore xD

  • @willnewman9783
    @willnewman9783 5 років тому

    Hey Bprp, have you done a video on the proof of Parsevel? I couldn't find one if you did. If not, you totally should

    • @blackpenredpen
      @blackpenredpen  5 років тому

      will newman dr. P might have already done that. I am not sure tho.

  • @jarikosonen4079
    @jarikosonen4079 5 років тому

    Yes. Try to make sum of 1/n^3 and 1/n^5 also...

  • @volticat
    @volticat 5 років тому +1

    So this is what teachers do after the school year is over

  • @arjunprasad1642
    @arjunprasad1642 5 років тому

    Pikachu used *calculus skills*
    Summation has been defeated

  • @CDChester
    @CDChester 5 років тому +3

    OH MY .... LORD! THE MATHS!!!

  • @kutuboxbayzan5967
    @kutuboxbayzan5967 5 років тому +1

    Thank you!

  • @pyromen321
    @pyromen321 5 років тому

    Why does Pikachu sound so unusual? I expected a bunch of pika pikas

  • @apta9931
    @apta9931 5 років тому

    It's been too long since I watched these when I wasn't studying😂

  • @nablahnjr.6728
    @nablahnjr.6728 5 років тому

    so apparently blackpikaredpika can use the world to erase his board...

  • @snipergranola6359
    @snipergranola6359 5 років тому +1

    Well done pikachu,

  • @wjx8439
    @wjx8439 5 років тому

    For the sum of reciprocals of sixth powers, let's just call it S
    let f(x)=x^3
    a_0=0 because x^3 is odd
    a_n=0 because (x^3)(cos(nπ)) is odd
    Using DI method, we can find out that,
    b_n
    =cos(nπ)(-2π^2/n + 12/n^3)
    =(-1)^n × (-2π^2/n + 12/n^3)
    so using Parseval Theorem and substituting the sum of reciprocals of fourth powers (π^4/90) and the sum of reciprocals of squares (π^2/6), we can find out that,
    2π^6/7 = 144S - 8π^6/15 + 2π^6/15
    144S = 16π^6/105
    S=π^6/945
    so the sum of reciprocals of sixth powers is π^6/945.

  • @seroujghazarian6343
    @seroujghazarian6343 5 років тому

    This only works for sums of even powers of the denominator as square roots don't work for negative numbers UNLESS you want the sum of real numbers to give you a complex number