A Nice Tangent Equation

Поділитися
Вставка
  • Опубліковано 21 січ 2025

КОМЕНТАРІ • 38

  • @cyberlumber
    @cyberlumber 12 днів тому +1

    In the first method, the replacement tan(x) = t sqrt(3) gives you the equation:
    3 sqrt(3) t^2 + 2 sqrt(3) t - sqrt(3) = 0
    Which can be divided by sqrt(3), leaving you with:
    3t^2 + 2t - 1 = 0
    Which is quite simpler because it has only rational coefficients.

  • @dan-florinchereches4892
    @dan-florinchereches4892 17 днів тому +2

    If we multiply by 2 we will have the double angle formula for tangent so tan(2x)=sqrt(3) so
    2x=Pi/3+k*Pi => x=Pi/6+k*Pi/2 with K an integer

  • @rob876
    @rob876 17 днів тому +7

    tan 2x = √3
    2x = π/3 + nπ
    x = π/6 + nπ/2

    • @paulmurtagh9823
      @paulmurtagh9823 16 днів тому +1

      That’s what I immediately saw when I looked at the equation.

  • @LukieReal
    @LukieReal 17 днів тому

    tanx/(1- tan^2(x)) = sqrt(3)/2
    tanx/(2 - sec^2(x)) = "
    sinx/(2cosx - 1/cosx) = "
    sinx/([2cos^2(x) - 1]/cosx) = "
    sinx/([1 - 2sin^2(x)]/cosx) = "
    sinx*cosx/cos(2x) = "
    sin(2x)/2cos(2x) = "
    tan(2x)/2 = sqrt(3)/2
    tan(2x) = sqrt(3)
    tanx = sqrt(3) at π/3 + πk
    ∴ tan(2x) = sqrt(3) at (π/3 + πk)/2 or π/6 + πk/2
    idk why i did it this way but i love the algebra. so cool!

  • @bobbyheffley4955
    @bobbyheffley4955 16 днів тому

    Doubling both sides results in the tangent double angle formula.

  • @lesnyk255
    @lesnyk255 17 днів тому

    The only trig identities I still remember (been retired for 10+ yrs now) are "cos-sqr + sin-sqr = 1", & "2.sin(x).cos(x) = sin(2x)". All the others, I have to look up. (I've got 'em bookmarked.) I figured there was probably an identity that would make short work of this, but I went straight for the quadratic, & would have gotten it if I hadn't inadvertently swapped the signs of the 0-th & 1st order coefficients. I got the exact opposite of what you did. I got the math right, it's always the arithmetic that F's me up!

  • @SweetSorrow777
    @SweetSorrow777 17 днів тому +1

    You get 4 values for theta. The positive one gives you 2. 1 in the first and other in the 3rd quadrant. The negative root places them in the 2nd and 4th quadrant.
    2nd method: you sneaky....😅
    I forgot about that identity.

  • @TejasDhuri-p8z
    @TejasDhuri-p8z 17 днів тому +1

    I got one solution like
    Multiply nr and dr of LHS by 2
    2tanx/(1-tan²x)=tan2x
    tan2x=√3
    x=π/6
    another solution x=-π/3 is obtained on solving quadratic equation

  • @DrQuatsch
    @DrQuatsch 17 днів тому +1

    1 - tan^2(x) = cos^2(x)/cos^2(x) - sin^2(x)/sin^2(x) = [cos^2(x) - sin^2(x)]/cos^2(x) = cos(2x)/cos^2(x)
    Now we can simplify the fraction on the LHS: tan(x)/(1 - tan^2(x)) = [sin(x)/cos(x)]/[cos(2x)/cos^2(x)] = [sin(x)/cos(x)] * [cos^2(x)/cos(2x)] = sin(x) * cos(x) / cos(2x) = 1/2 * [2 * sin(x) * cos(x)]/cos(2x) = 1/2 * sin(2x) / cos(2x) = 1/2 * tan(2x).
    So we have 1/2 * tan(2x) = sqrt(3)/2 --> tan(2x) = sqrt(3). Therefore 2x = pi/3 + k*pi, now to divide by 2, we get x = pi/6 + k*pi/2.

  • @fahrenheit2101
    @fahrenheit2101 17 днів тому

    A bit simple
    Double both sides, rewrite LHS as tan(2x), and invert.
    x = pi/6 + n*pi/2
    Edit: Seems I used the 2nd method.

  • @davidtaran952
    @davidtaran952 17 днів тому +1

    *2: tan(2x)=sqrt(3)
    2x=60+180*n, n=0,-1,1,-2,2, ...
    x=30+90*n

  • @markobavdek9450
    @markobavdek9450 16 днів тому

    Lets use coffee one time. 😅

  • @Iomhar
    @Iomhar 17 днів тому +1

    4/2=2, not 1.

  • @user-lu6yg3vk9z
    @user-lu6yg3vk9z 17 днів тому

    tan(x)/(1-tan^2(x))=(3)^1/2/(2)
    2tan(x)/(1-tan^2(x))=3^1/2
    tan(2x)=3^1/2
    tan^-1(tan(2x))=tan^-1(3^1/2)
    2x=tan^-1(3^1/2)
    x=tan^-1(3^1/2)/2

  • @Don-Ensley
    @Don-Ensley 17 днів тому

    problem
    (tan x) / (1-tan² x) = √3/2
    tan x = (√3 / 2 ) - (√3 / 2 ) tan² x
    (√3 / 2 ) tan² x + tan x -(√3 / 2 ) = 0
    Let
    y = tan x
    (√3 / 2 ) y² + y - (√3 / 2 ) = 0
    Use the quadratic formula.
    y = {-1 ± √[1+4 (√3 / 2 )(√3 / 2 )]} /√3
    = {-1 ± √[1+3]} /√3
    = {-1 ± 2} /√3
    = 1 /√3 , -√3
    tan x = 1 /√3
    x = π / 6 + N π, N ∈ ℤ
    tan x = -√3
    x = 2 π / 3 + K π, K ∈ ℤ
    answer
    x ∈ { π / 6 + N π,
    2 π / 3 + K π,
    ( N, K ∈ ℤ ) }

  • @scottleung9587
    @scottleung9587 17 днів тому

    I used the first method.

  • @pedrojose392
    @pedrojose392 17 днів тому

    Do not need to solve a quadratic equation. If you multiply both membros for 2 you have;
    tan(2x)=sqr(3) só x=30o + k*90o; k E Z.

    • @fahrenheit2101
      @fahrenheit2101 17 днів тому

      Did you watch to the end?

    • @pedrojose392
      @pedrojose392 16 днів тому

      @fahrenheit2101 I solve the problem, if i am abre to solve, before watching the solution, to exercice.

    • @fahrenheit2101
      @fahrenheit2101 16 днів тому

      @@pedrojose392 That's fair, it just seemed like you were critiquing the video. Apologies for assuming

    • @pedrojose392
      @pedrojose392 16 днів тому

      @fahrenheit2101 No problema! I am 68 years old. I am not a mathematical. I study by myself, I need to practice. In the subway, bus, restaurant, at home when not working, I am always searching for problema. I like more number theory. I apologize if it seems like a criticism.

  • @AvikDey-z6y
    @AvikDey-z6y 16 днів тому

    Tan2x=Tan(60)degree
    2x=60
    Or x=60/2=30

  • @rakenzarnsworld2
    @rakenzarnsworld2 17 днів тому

    tanx = -sqrt3

  • @JK-eo2mj
    @JK-eo2mj 16 днів тому

    Why do you say "plus-minus" but write "minus-plus"? It doesn't really matter, just asking.

  • @AvikDey-z6y
    @AvikDey-z6y 16 днів тому

    Or tan(2x) = (1/2)😢😢😢😢😢😢😢

  • @SidneiMV
    @SidneiMV 17 днів тому +6

    welll.. it's just a quadratic equation..
    (senxcosx)/(cos²x - sen²x) = (√3)/2
    sen(2x)/cos(2x) = √3
    sen(2x) = √3cos(2x)
    cos²(2x) = 1/4 => cos(2x) = ± 1/2
    cos(2x) = 1/2 => sen(2x) = (√3)/2
    => 2x = π/3 + 2kπ => *x = π/6 + kπ*
    cos(2x) = -1/2 => sen(2x) = -(√3)/2
    => 2x = 4π/3 + 2kπ => *x = 2π/3 + kπ*

    • @chillwhale07
      @chillwhale07 16 днів тому

      No quadratic equation has infinite solutions

    • @SidneiMV
      @SidneiMV 16 днів тому

      @chillwhale07 Don't be a dumb. It's a trigonometric function embedded in a quadratic equation.

    • @chillwhale07
      @chillwhale07 16 днів тому +1

      @SidneiMV wdym? it still has infinite solutions

    • @asheredude
      @asheredude 15 днів тому +1

      ​@@chillwhale07 there are only two roots but then we made it infinite so the work of Solving is done and then it is made infinite solⁿ. It is just a way to solve

  • @E.h.a.b
    @E.h.a.b 17 днів тому

    Let y = Tan(x) we get
    y/(1-y^2) = √3 / 2
    2 y = √3 (1-y^2)
    √3 y^2 + 2 y - √3 =0
    y = (-2 +/- √(4-4(-√3)(√3)) )/2√3
    y = (-2 +/- √16)/2√3
    y = (-1 +/- 2)/√3 = {-3/√3 , 1/√3 } Since y > 0 so y=3/√3 is rejected so we get
    Tan(x) = 1/√3 OR Tan(x) = -3/√3 = -√3
    x = tan⁻¹(1/√3) = Pi/6 OR x = tan⁻¹(-√3) = -Pi/3 = -2 Pi/6
    x = Pi/6 + N * Pi OR x = = -2 Pi/6 + N * Pi
    Final answer is :
    x = (3 N -2) Pi/6 Where N is integer and (N >= 0)

    • @Packerfan130
      @Packerfan130 13 днів тому

      (1) why does y have to be positive?
      (2) if you only accept the result y= sqrt(3)/3, then you end up with x = pi/6 + N*pi instead of x=pi/6 + N*pi/2 because if you take N = 1 in your answer, y does not equal sqrt(3)/3

    • @E.h.a.b
      @E.h.a.b 13 днів тому

      @@Packerfan130 you are right. I will fix it.

  • @black_eagle
    @black_eagle 16 днів тому

    I like your videos, but I could do without the dumb repetitive puns ("tea", "to be", etc.).

  • @erikroberts8307
    @erikroberts8307 17 днів тому +1

    I don't like tea
    ua-cam.com/video/Ny5y90YVLmE/v-deo.htmlfeature=shared