Similar matrices have the same characteristic polynomial

Поділитися
Вставка
  • Опубліковано 10 січ 2025

КОМЕНТАРІ • 18

  • @punditgi
    @punditgi 4 місяці тому +10

    The characteristic of a Prime Newtons video is that it is chock full of useful information about math similar to the best teachers on UA-cam. 😢😊

  • @jamesharmon4994
    @jamesharmon4994 4 місяці тому +2

    This went SO far over my head that I need a telescope!!

  • @e.s.r5809
    @e.s.r5809 4 місяці тому

    Thank you so much! I've been studying linear algebra to understand my quantum mechanics modules better, so this is perfect timing for me. 😊 Much appreciated!

  • @holyshit922
    @holyshit922 4 місяці тому

    Fact that similar matrices have the same eigenvalues is used in numerical linear algebra to find eigenvalues
    There are used transformations which preserve similarity like Householder reflections or Givens rorations or just modification of Gaussian elimination
    To preserve similarity we must perform elementary operations on both rows and columns

  • @mpandejonasshane
    @mpandejonasshane 4 місяці тому

    I love this guy,I mean his teaching style and the way he acts 😊😊

  • @Anmol_Sinha
    @Anmol_Sinha 4 місяці тому +2

    What does drawing the square in the end mean?

  • @i18nGuy
    @i18nGuy 3 місяці тому

    Why is lambda the same on both sides? The characteristic polonomial has some value lambda, but it doesnt need to be the same value for all matrices. Using the same lambda on both sides seems to assume the matrices have the same characteristic. I would think that needs to be proven.

  • @DiverseDose11
    @DiverseDose11 4 місяці тому +1

    Here are 235 chapters of mathematics:🤫🗣️
    1. Arithmetic Operations
    2. Properties of Numbers
    3. Fractions and Decimals
    4. Integers
    5. Prime Numbers
    6. Factors and Multiples
    7. Divisibility Rules
    8. Exponents and Powers
    9. Order of Operations
    10. Number Patterns and Sequences
    11. Place Value
    12. Roman Numerals
    13. Ratio and Proportion
    14. Percentages
    15. Profit and Loss
    16. Simple Interest
    17. Compound Interest
    18. Discount and Markup
    19. Average
    20. Mean, Median, and Mode
    21. Range
    22. Probability
    23. Counting Techniques
    24. Permutations and Combinations
    25. Sets
    26. Union and Intersection of Sets
    27. Subsets and Power Sets
    28. Venn Diagrams
    29. Functions and Relations
    30. Domain and Range
    31. Function Notation
    32. Graphs of Functions
    33. Inverse Functions
    34. Linear Functions
    35. Quadratic Functions
    36. Polynomial Functions
    37. Rational Functions
    38. Exponential Functions
    39. Logarithmic Functions
    40. Trigonometric Functions
    41. Trigonometric Identities
    42. Trigonometric Equations
    43. Law of Sines
    44. Law of Cosines
    45. Right Triangle Trigonometry
    46. Graphs of Trigonometric Functions
    47. Polar Coordinates
    48. Parametric Equations
    49. Sequences and Series
    50. Arithmetic Sequences and Series
    51. Geometric Sequences and Series
    52. Binomial Theorem
    53. Mathematical Induction
    54. Complex Numbers
    55. Arithmetic Operations with Complex Numbers
    56. Polar Form of Complex Numbers
    57. De Moivre's Theorem
    58. Matrices
    59. Matrix Operations
    60. Determinants
    61. Inverse of a Matrix
    62. Systems of Linear Equations
    63. Gauss-Jordan Elimination
    64. Cramer's Rule
    65. Vector Spaces
    66. Linear Independence and Dependence
    67. Basis and Dimension
    68. Inner Product Spaces
    69. Eigenvalues and Eigenvectors
    70. Diagonalization
    71. Orthogonalization
    72. Differential Calculus
    73. Limits and Continuity
    74. Derivatives
    75. Differentiation Rules
    76. Implicit Differentiation
    77. Related Rates
    78. Higher Order Derivatives
    79. Mean Value Theorem
    80. L'Hôpital's Rule
    81. Taylor and Maclaurin Series
    82. Integral Calculus
    83. Indefinite Integrals
    84. Integration by Substitution
    85. Integration by Parts
    86. Trigonometric Integrals
    87. Partial Fractions
    88. Improper Integrals
    89. Applications of Integration
    90. Area Under a Curve
    91. Volume of Revolution
    92. Arc Length and Surface Area
    93. Polar Coordinates
    94. Parametric Equations
    95. Differential Equations
    96. First Order Differential Equations
    97. Second Order Differential Equations
    98. Homogeneous Differential Equations
    99. Nonhomogeneous Differential Equations
    100. Systems of Differential Equations
    101. Permutations and Combinations
    102. Fourier Series
    103. Partial Differential Equations
    104. Vector Calculus
    105. Vector Fields
    106. Line Integrals
    107. Green's Theorem
    108. Divergence Theorem
    109. Stoke's Theorem
    110. Conservative Vector Fields
    111. Gradient, Divergence, and Curl
    112. Three-Dimensional Coordinate Systems
    113. Parametric Surfaces
    114. Cylindrical and Spherical Coordinates
    115. Multivariable Calculus
    116. Partial Derivatives
    117. Chain Rule
    118. Directional Derivatives
    119. Gradient Vector
    120. Tangent Planes and Normal Vectors
    121. Double Integrals
    122. Triple Integrals
    123. Change of Variables in Multiple Integrals
    124. Surface Integrals
    125. Flux Integrals
    126. Vector Analysis
    127. Green's, Gauss's, and Stokes's Theorems
    128. Complex Analysis
    129. Complex Functions
    130. Analytic Functions
    131. Contour Integration
    132. Cauchy's Integral Theorem
    133. Residue Theory
    134. Laurent Series
    135. Conformal Mapping
    136. Real Analysis
    137. Limits and Continuity
    138. Sequences and Series
    139. Differentiation and Integration
    140. Metric Spaces
    141. Topology
    142. Functions of Several Variables
    143. Continuous Functions
    144. Differentiable Functions
    145. Riemann Integration
    146. Measure Theory
    147. Lebesgue Integration
    148. Hilbert Spaces
    149. Banach Spaces
    150. Fourier Analysis
    151. Fourier Transform
    152. Laplace Transform
    153. Z-Transform
    154. Convolution
    155. Wavelets
    156. Distribution Theory
    157. Differential Geometry
    158. Curves and Surfaces
    159. Tangent Spaces and Normal Spaces
    160. Riemannian Manifolds
    161. Geodesics
    162. Gaussian Curvature
    163. Differential Forms
    164. Exterior Derivative
    165. Integration on Manifolds
    166. Lie Groups
    167. Lie Algebras
    168. Lie Theory
    169. Algebraic Topology
    170. Homotopy Theory
    171. Homology Theory
    172. Cohomology Theory
    173. Fiber Bundles
    174. Characteristic Classes
    175. Differential Topology
    176. Morse Theory
    177. Algebraic Geometry
    178. Affine Geometry
    179. Projective Geometry
    180. Conic Sections
    181. Algebraic Curves
    182. Algebraic Surfaces
    183. Commutative Algebra
    184. Rings and Ideals
    185. Modules
    186. Noetherian Rings
    187. Field Theory
    188. Galois Theory
    189. Algebraic Number Theory
    190. Arithmetic Geometry
    191. Elliptic Curves
    192. Diophantine Equations
    193. Cryptography
    194. Coding Theory
    195. Group Theory
    196. Group Actions
    197. Sylow Theory
    198. Solvable and Nilpotent Groups
    199. Representation Theory
    200. Group Extensions
    201. Group Cohomology
    202. Commutative Group Theory
    203. Algebraic Structures
    204. Homological Algebra
    205. Category Theory
    206. Abstract Algebra
    207. Universal Algebra
    208. Semigroup Theory
    209. Ring Theory
    210. Noncommutative Ring Theory
    211. Field Theory
    212. Lattice Theory
    213. Ordered Sets
    214. Boolean Algebra
    215. Topological Spaces
    216. Metric Spaces
    217. Continuity and Convergence
    218. Compact Spaces
    219. Connected Spaces
    220. Separation Axioms
    221. Product Spaces
    222. Quotient Spaces
    223. Manifolds
    224. Smooth Manifolds
    225. Differentiable Manifolds
    226. Lie Groups
    227. Lie Algebras
    228. Lie Theory
    229. Fiber Bundles
    230. Differential Forms
    231. Integration on Manifolds
    232. Differential Operators
    233. Riemannian Geometry
    234. Symplectic Geometry
    235. Pythagoras theorem
    If you saw this,you gotta subscribe me😉
    Plz bro🤝❤️🗿🦅

    • @Grecks75
      @Grecks75 4 місяці тому

      235. Pythagoras theorem LOL
      I would've subscribed if you had all of this content covered on your channel. 😉

  • @oraz.
    @oraz. 4 місяці тому

    Nice

  • @akg0376
    @akg0376 4 місяці тому +4

    A black man with bright knowledge 👍👏.

    • @82rah
      @82rah 4 місяці тому

      Mr Prime is black. So what?

    • @obeyy0urmaster
      @obeyy0urmaster 4 місяці тому

      What does that have to do with anything ?

  • @yvanricardoecarrigomez
    @yvanricardoecarrigomez 4 місяці тому

    Stop leening stop leaving

  • @shacharh5470
    @shacharh5470 4 місяці тому +1

    It's easy to show that if A and B are similar then (A - λI) and (B - λI) are similar. Next use the fact that similarity preserves the determinant. That's it.

    • @rrregis
      @rrregis 4 місяці тому +2

      That's essentially what he did, without stating as much.