Offline Reinforcement Learning Research Survey

Поділитися
Вставка
  • Опубліковано 9 лют 2025
  • This video is a summary of offline reinforcement learning research up to last year (2023).
    References:
    A survey on offline reinforcement learning: Taxonomy, review, and open problems (2023)
    ieeexplore.iee...
    Offline Reinforcement Learning: BayLearn 2021 Keynote Talk (UA-cam video)
    • Offline Reinforcement ...
    Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems (2020)
    arxiv.org/pdf/...
    OFFLINE RL FOR NATURAL LANGUAGE GENERATION WITH IMPLICIT LANGUAGE Q LEARNING (2023)
    arxiv.org/pdf/...
    A Minimalist Approach to Offline Reinforcement Learning (2021)
    proceedings.ne...
    COMBO: Conservative Offline Model-Based Policy Optimization (2021)
    proceedings.ne...
    EMaQ: Expected-Max Q-Learning Operator for Simple Yet Effective Offline and Online RL (2021)
    proceedings.ml...
    BADGR: An Autonomous Self-Supervised Learning-Based Navigation System (2020)
    ieeexplore.iee...
    Q-Transformer: Scalable Offline Reinforcement Learning via Autoregressive Q-Functions (2023)
    proceedings.ml...
    Leveraging Offline Data in Online Reinforcement Learning (2023)
    proceedings.ml...
    Direct preference optimization: Your language model is secretly a reward model (2023)
    arxiv.org/pdf/...
    Offline Reinforcement Learning as One Big Sequence Modeling Problem (2021)
    proceedings.ne...
    OFFLINE REINFORCEMENT LEARNING WITH IMPLICIT Q-LEARNING (2021)
    arxiv.org/pdf/...
    AWAC: Accelerating Online Reinforcement Learning with Offline Datasets (2021)
    arxiv.org/pdf/...
    COG: Connecting New Skills to Past Experience with Offline Reinforcement Learning (2020)
    arxiv.org/pdf/...
    Conservative Q-Learning for Offline Reinforcement Learning (2020)
    proceedings.ne...

КОМЕНТАРІ •